Banner Portal
Candida albicans proteinases
Remote
Sem título

Keywords

Proteinases. Virulence. Candida

How to Cite

1.
Mardegan R de C, Foglio MA, Gonçalves RB, Höfling JF. Candida albicans proteinases. Braz. J. Oral Sci. [Internet]. 2015 Nov. 16 [cited 2024 Jul. 17];5(16):944-52. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8641872

Abstract

Candida species are ubiquitous commensal yeast that usually reside as part of an individual´s normal mucosal microflora and can be detected in approximately 50% of the population in this form. However, if the balance of the normal flora is disrupted or the immune defences are compromised, Candida species can invade mucosal surfaces and cause disease manifestations. Determining exactly how this transformation from commensal to pathogen takes place and how it can be prevented is a continuing challenger for the medical mycology field. Attributes that contribute to Candida albicans virulence include adhesion, hyphal formation, phenotypic switching and extra cellular hydrolytic enzyme production. The extra cellular hydrolytic enzyme, especially the secreted aspartyl proteinases (Saps), are one a few gene products that have been shown to directly contribute to C. albicans pathogenicity. Given the limited number of suitable and effective antifungal drugs, the continuing increase in the incidence of Candida infections, together with increasing drug resistance, highlights the need to discover new and better agents that target fundamental biological processes and or pathogenic determinants of C. albicans.
https://doi.org/10.20396/bjos.v5i16.8641872
Remote
Sem título

References

Sweet SP. Selection and pathogenicity of Candida albicans in HIV infection. Oral Dis. 1997; 3: s88-s95.

Finlay BB, Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989; 53: 210-30.

Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003; 67: 400-28.

Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001; 9: 327-35.

McKerrow JH, Sun E, Rosenthal PJ, Bouvier J. The proteases and patogenicity of parasitic protozoa. Annu Rev Microbiol. 1993; 47: 821-53.

Ogrydziak DM. Yeast extracellular proteases. Crit Rev Biotechnol. 1993; 13: 1-55.

Cunningham E L. Agard D A. Disabling the folding catalyst is the last critical step in alpha-lytic protease folding. Protein Sci. 2004; 13: 325-31.

Barrett AJ, Rawlings ND. Types and families of endopeptidases. Biochem Soc Trans. 1991; 19: 707-15.

Choi GH, Pawlyk DM, Rae B, Shapira R, Nuss DL. Molecular analysis and overexpression of the gene encoding endothiapepsin, an aspartic protease from Cryphonectria parasitica. Gene. 1993; 125: 135-41.

Smithson SL, Paterson IC, Bailey AM, Screen SE, Hunt BA, Cobb BD, et al. Cloning and characterization of gene encoding a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae. Gene. 1995; 166: 161-5.

Salyers A, Witt D. Virulence factors that promote colonization. In: Salyers A., Witt D (cd), Bacterial pathogenesis: a molecular approach. Washington: ASM Press; 1994. p. 30-46.

Jaton-Ogay K, Paris S, Huerre M, Guadroni M, Falchetto R, Togni G, et al. Cloning and disruption of the gene encoding an extracellular metalloprotease of aspergillus fumigatus. Mol Microbiol. 1994; 14: 917-28.

Brueske CH. Proteolytic activity of a clinical isolate of Cryptococcus neoformans. J Clin Microbiol. 1986; 23: 631-3.

Monod M, Borg-Von Zepelin M. Secreted proteinases and other virulence mechanisms of Candida albicans. Chem Immunol; 2002. 81: 114-28.

De Bernardis F, Sullivan PA, Cassone A. Aspartyl proteinases of Candida albicans and their role in pathogenicity. Med Mycol. 2001. 39: 303-13.

Hube B, Naglik J. Candida albicans proteinases: resolving the mystery of a gene family. Microbiology. 2001; 147: 1997-2005.

Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000; 13: 122-43.

Gilfillan GD, Sullivan DJ, Haunes K, Parkinson T, Coleman DC, Gow NA. Candida dubliniensis: phylogeny and putative virulence factors. Microbiology. 1998; 144: 829-38.

Monod M, Togni G, Hube B, Sangland D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol. 1994; 13: 357-68.

Hube B, Turver CJ, Odds FC, Eiffert H, Boulnois GJ, Köchel H, et al. Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J Med Vet Mycol. 1991; 29: 129-32.

Wright RJ, Carne A, Hieber AD, Lamont IL, Emerson GW, Sullivan PA. A second gene for a secreted aspartate proteinase in Candida albicans. J Bacteriol. 1992; 174: 7848-53.

Monod M, Togni G, Hube B, Sanglard D. Multiplicity of genes encoding secreted aspartic proteinase. Mol Microbiol. 1994; 13: 357-68.

White TC, Miyasaki SH, Agabian N. Three distint secreted aspartic ptoteinase in Candida albicans. J. Bacteriol. 1993; 174: 6126-33.

Miyasaki SH, White TC, Agabian N. A fourth secreted aspartic proteinase gene (SAP4) and a CARE2 repetitive element are located upstream of the SAP1 gene in Candida albicans. J Bacteriol. 1994; 176: 1702-10.

Newport G, Agabian N. KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem. 1997; 272: 28954-61.

Togni G, Sanglard D, Quadroni M, Foundling SI, Monod M. Acid proteinase secreted by Candida tropicalis: functional analysis of preproregion cleavages in C. tropicalis and Saccharomyces cerevisiae. Microbiology. 1996; 142: 493-503.

Koelsch G, Tang J, Loy JA, Monod M, Jackson K, Foundling SI, et al. Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim Biophys Acta. 2000; 1480: 117-31.

Hube B. Candida albicans secreted aspartic proteinases. Curr Top Med Mycol. 1996; 7: 55-69.

Magee BB, Hube B, Wright RJ, Sullivan PJ, Magee PT. The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect Immun. 1993; 618: 3240-3.

Zaugg C, Borg-Von Zepelin M, Reichard U, sanglard D, Monod D. Secreted aspartic proteinase family of Candida tropicalis. Infect Immun. 2001; 69: 405-12.

Ray TL, Payne CD, Ruchel R, Ritter B, Schaffrinski M. Comparative production and rapid purification of Candida acid proteinase from protein-supplemented cultures. Infect Immun. 1990; 273: 391-403.

Macdonald F. Secretion of inducible proteinase by pathogenic Candida species. Sabouraudia. 1984; 22: 79-82.

Rüchel R. Proteinase. In: Bennett JE, Hay RJ, Peterson PK, editors. New strategies in fungal disease. Edinburgh: Churchill Livingstone; 1992. p.17-31.

Hube B, Monod M, Schofield DA, Brown AJP, Gow NAR. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994; 14: 87-99.

White TC, Agabian N. Candida albicans secreted aspartic proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 1995; 177: 5215-21.

Staib F. serum-proteins as nitrogen source for yeastlike fungi. Sabouraudia. 1965; 4: 187-93.

Remold H, Fasold H, Staib F. Purification and characterization of a proteolytic enzyme from Candida albicans. Biochim Biophys Acta. 1968; 167: 399-406.

Odds FC. Candida species and virulence. ASM News. 1994; 60: 313-8.

Colina A, Aumont RF, Deslauriers N, Belhumeur P, de Repentigny L. Evidence for degradation of gastrointestinal mucin by Cândida albicans secretory aspartyl proteinase. Infect Immun. 1996; 64: 4514-9.

de Repentigny L, Aumont F, Bernard K, Belhumeur P. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect Immun. 2000; 68: 3172-9.

Rüchel R. Cleavage of immunoglobulins by pathogenic yeast of the genus Candida. Microbial Sci. 1986; 3: 316-9.

Kilian M, Mestecky J, Russell MW. Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol Rev. 1988; 52: 296-303.

Hube B, Monod M, Schofield DA, Brow AJ, Gow NA. Expression of seven members of the gene family encoding secretory aspartic proteinase in Candida albicans. Mol Microbiol. 1994; 14: 87-99 44. Vudhichamnong K, Walker DM, Ryley HC. The effect of secretory immunoglobulin A on the in vitro adherence of the yeast candida albicans to human epithelial cells. Arch Oral Biol. 1982; 27: 617-21.

White TC, Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 1995; 177: 5215-21.

Wu T, Samaranayake LP. The expression of secreted aspartyl proteinases of Candida species in human whole saliva. J Med Microbiol. 1999; 48: 711-20.

Germaine GR, Tellefson LM. Effect of pH and human saliva on protease production by Candida albicans. Infect Immun. 1981; 31: 323-6.

Kaminishi H, Hamatake H, Cho T, Tamaki T, Suenaga N, Hisamatsu M, et al. Degradation of humoral host defense by Cândida albicans proteinase. Infect Immun. 1995; 63: 984-8.

Morrow B, Srikantha T, Soll,DS. Transcription of the gene for a pepstinogen, PEP1, is regulated by while-opaque switching in Candida albicans. Mol Cell. Biol. 1992; 12; 2997-3005.

Monod M, Hube B, Hess D, Sangland D. Differential regulation of SAP8 and SAP9 which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology. 1998; 144: 2731-7.

Schaller M, Schäfer W, Korting HC, Hube B. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol. 1998; 29: 605-15.

Schaller M, Korting HC, Schafer W, Bastert J, Chen W, Hube B.

Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol. 1999; 34: 169-80.

Straib P, Kretschman M, Nichterlein T, Holf H, Morschhauser J. Differential activation of a Candida albicans virulence gene family during infection. Proc. Natl Acad Sci USA. 2000; 23; 97: 6102-7.

De Bernardis F, Boccanera M, Rainaldi L, Guerra CE, Quinti I, Cassone A. The secretion of aspartyl proteinase, a virulence enzyme, by isolates of Candida albicans from the oral cavity of HIV-infected subjects. Eur J Epidemiol. 1992; 8: 362-7.

Wu T, Samaranayake LP, Cao BY, Wang J. In vitro proteinase production by oral Candida albicans isolates from individuals with and without HIV infection and its attenuation by antimycotic agents. J Med Microbiol. 1996; 44: 311-6.

Ollert MW, Wend C, Gorlich M, McMullan-Vogel CG, Borg-von Zepelin M, Vogel CW, et al. Increased expression of Candida albicans secretory proteinase, a putative virulence factor, in isolates from human immunodeficiency virus-positive patients. J Clin Microbiol. 1995; 33: 2543-9.

Agatensi L, Franchi F, Montello F, Bevilacqua RL, Ceddia T, De Bernardis F, et al. Vaginopathic and proteolytic Candida species in outpatients attending a gynaccology clinic. J Clin Pathol. 1991; 44: 826-30.

Soll DR. Higt-frequency switching in Candida albicans. Clin microbial rev. 1992; 5: 183-203.

Cassone A, De Bernardis F, Mondello F, Ceddia T, Agatensi L. Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Inf Dis. 1987; 156: 777-83.

De Bernardis F, Mondello F, Scaraveli G, Pachi A, Girolamo A, Agatensi L, et al. Higt aspartyl proteinase production and vaginitis in human immunodeficiency vírus-infected women. J Clin Microbiol. 1999; 37: 1376-80.

Kondoh Y, Shimizu K, Tanaka K. Proteinase production and pathogenicity of Candida albicans. II . Virulence for mice of C. albicans strains of different proteinase activity. Microbiol Immunol. 1987; 31: 1061-9.

Macdonald F, Odds FC. Virulence for mice of a proteinase secreting strain of Candida albicans and a proteinase-deficient mutant. J Gen Microbiol. 1983; 129: 431-8.

Borg M, Ruchel R. Demonstration of fungal proteinase during phagocytosis of Candida albicans and Candida tropicalis. J Med Vet Mycol. 1990; 28: 3-14.

Naglik JR, Newport G, White TC, Fernandes-Naglik LL, Grenspan JS, Grenspan D, et al. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun. 1999; 67: 2482-90.

Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D, et al. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with oral and vaginal infections. J Infect Dis. 2003; 188: 465-75.

Schaller M, Januschkert E, Schackert C, Woerle B, Korting HC. Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. J Med Microbiol. 2001; 50: 743-7.

Adab-Zapatero C, Goldman CR, Muchmore SW, Hutchins C, Stewart K, Navaza J, et al. Struture of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agent. Protein Sci. 1996; 5: 640-52.

Cutfield SM, Dodson EJ, Anderson BF, Noody PC, Marshall CJ, Sullivan PA, et al. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure. 1995; 3: 1261-71.

Morschhauser J, Virkola R, Korhonen TK, Hacker J. Degradation of human subendothelial extracellular matrix by proteinase secreting Candida albicans. FEMS Microbiol. 1997; 153: 349- 55.

Cauda R, Tacconelli M, Tumbarello M, Morace G, De Bernardis F, Torosantucci A, et al. Role of protease inhibitors in preventing recurrent oral candidosis im patients with HIV infection: a prospective case-control study. J Acquir Immun Defic Syndr. 1999; 21: 20-5.

Gruber A, Speth C, Lukasser-Vogl E, Zangerle R, Borg von Zepelin M, Dierich MP, et al. Human immunodeficiency virus type 1 protease inhibitor attenuates Candida albicans virulence properties in vitro. Immunopharmacology. 1999; 41: 227-34.

Borg-Von Zeppelin M, Meyer I, Thomssen R, Wurzner R, Sanglard D, Telenti A, et al. HIV-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Investig Dermatol. 1999; 113: 747-51.

Cassone A, De Bernardis F, Torosantucci A, Tacconelli M, Tumbarello M, Cauda R. In vitro and in vivo anticandidal activity of human immunodeficiency vírus protease inhibitors. J Infect Dis. 1999; 180: 448-53.

Korting HC, Schaller M, Eder G, Hamm G, Bohmer U, Hube B. Effect of the human immunodeficiency virus (HIV) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartil proteinases of Candida albicans isolates from HIVinfected patients. 1999; Antimicrob Agents Chemother. 1999; 43: 2038-42.

Pichova I, Pavlickova L, Dostal J, Dolejsi E, HruskovaHeidingsfeldova O, Weber J, et al. Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaneae. Inhibition with peptidomimetic inhibitors. Eur J Biochem. 2001; 268: 2669-77.

Gruber A, Berlit J, Speth C, Lass-Florl C, Kofler G, Nagl M, et al. Dissimilar attenuation of Candida albicans virulence properties by human immunodeficienty virus type 1 protease inhibitors. Immunobiology. 1999; 201: 133-44.

Hoegl L, Thoma-Gleber E, Rocken M, Korting HC. HIV proteases inhibitors influence the prevalence of oral candidosis in HIVinfected patients: a 2-years study. Mycoses. 1998; 41: 321-5.

Cassone A, Tacconelli M, De Bernardis F, Tumbarello M, Torosantucci A, Chiani R, et al. Antiretroviral therapy with protease inhibitors hás na early, immune reconstitution- independent beneficial effect on Cândida virulence and oral candidiasis im humam immunodeficiency virus-infected subjects. J Infect Dis. 2002; 185: 188-95.

Edison AM, Manning-Zweerink M. Comparison of the extracellular proteinase activity produced by a low-virulence mutant of Candida albicans and wild-type parent. Infect Immun. 1988; 56: 1388-90.

Fallon K, Bausch K, Noonan J, Huguenel E, Tamburine P. Role of aspartic proteases in disseminated Candida albicans infection in mice. Infect Immun. 1997; 65: 551-6.

Rüchel R, Ritter B, Schaffrinski M. Modulation of experimental systemic murine candidosis by intravenouns pepstatin. Zentbl Bakteriol . 1990; 273: 391-403.

Zotter C, Haustein UF, Schonborn C, Grimmecke HD, Wand H. Effect of pepstatin A on candida albicans infection in the mouse. Dermatol Monatsschrift. 1990; 176: 189-98.

Sato T, Nagai K, Shibazaki M, Abe K, Takebayashi Y, Lumanau B, et al. Novel aspartyl protease inhibitors, YF-0200R-A and B. J. Antibiot. (Tokyo) 1994; 47: 566-70.

Sato T, Shibazaki M, Yamaguchi H, Abe K, Matsumoto H, Shimizu M. Novel Cândida albicans aspartyl protease inhibitor. II. A new pepstatin-ahpatinin group inhibitor, YF-044P-D. J antibiotic. 1994; 47: 588-90.

Zhang Z, El Sohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM. Natural products inhibiting Candida albicans secreted aspartic proteases from Tovomita krukovii. Plant Med. 2002; 68: 49-54.

Zhang Z, El Sohly HN, Jacob MR, Pasco DS, Walker LA, Clark AM. Natural products inhibiting Candida albicans secreted aspartic proteases from Lycopodium cernuum. J Nat Prod. 2002; 65: 979-85.

The Brazilian Journal of Oral Sciences uses the Creative Commons license (CC), thus preserving the integrity of the articles in an open access environment.

Downloads

Download data is not yet available.