Simplified micrometric surface characterization of different implant surfaces available on the Brazilian market


  • Luiz Carlos do Carmo Filho State University of Campinas
  • Ana Paula Pinto Martins Federal University of Pelotas
  • Amália Machado Bielemann Federal University of Pelotas
  • Anna Paula da Rosa Possebon Federal University of Pelotas
  • Fernanda Faot Federal University of Pelotas



Dental Implants, Surface Properties, Energy Dispersive X-ray Spectroscopy.


Aim: This study characterized the implant surfaces available on the Brazilian market in terms of topography, chemical composition, and roughness. Methods: The following brands were selected according to their surfaces: Kopp (Ko), Signo Vinces (Sv), Neodent (Ne), Osseotite (Os) NanoTite (Nt), SIN (Si), Titanium Fix (Tf), conventional Straumann (Str), Active SLA (SLA). The morphological analysis and the alloy impurities and implant surface contaminants were analyzed by SEM-EDS. Surface roughness parameters and 3-D reconstructions were obtained by laser microscopy (20x). Two distinct areas were evaluated: i) the cervical portion (no surface treatment), and ii) the middle third (treated surface). Results: The characterization of the implant surfaces by SEM showed morphological differences between the thread geometries and surface morphology at 800x and 2000x magnification. The EDS elemental analysis showed a predominance of titanium (Ti) for all implants. The SLA surface showed only peaks of Ti while other implants brands showed traces of impurities and contaminants including Al, C, PR, F, Mg, Na, Ni, O, P, and SR. The implant surface roughness in the cervical portion did not exceed Ra 0.5–1.0 μm, constituting a minimally rough surface and obtaining acceptable standards for this region. Only Nt, Str, and SLA presented Ra above 2 μm in the middle third area showing a rough surface favorable for osseointegration. Conclusion: This study concluded that there is no established standard for morphology, chemical composition and implant surface roughness that allows a safe comparison between the available dental implant surfaces. National implant brands generally contain more impurities and surface contaminants than their international counterparts and were consequently more sensitive to the surface treatment techniques.


Download data is not yet available.


Metrics Loading ...

Author Biographies

Luiz Carlos do Carmo Filho, State University of Campinas

Department of Prosthodontics and Periodontology

Ana Paula Pinto Martins, Federal University of Pelotas

School of Dentistry, Federal University of Pelotas, RS, Brazil

Amália Machado Bielemann, Federal University of Pelotas

School of Dentistry, Federal University of Pelotas, RS, Brazil

Anna Paula da Rosa Possebon, Federal University of Pelotas

School of Dentistry, Federal University of Pelotas, RS, Brazil

Fernanda Faot, Federal University of Pelotas

Department of Restorative Dentistry


Aksoy U, Eratalay K, Tozum TF. The possible association among bone density values, resonance frequency measurements, tactile sense, and histomorphometric evaluations of dental implant osteotomy sites: a preliminary study. Implant Dent 2009;18(4):316–325.

Brånemark PI. Osseointegrated implants in the treatment of the edentulous jaw. Experience from 10 year period. Scand J Plast Reconst Surg 1977;16(1):1–32.

Shalabi MM, Wolke JG, Jansen JA. The effects of implant surface roughness and surgical technique on implant fixation in an in vitro model. Clin Oral Implants Res 2006;17(2):172–178.

Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater 2005;1(2):211–222.

Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert Review of Medical Devices 2010;7(2):241–256.

Braceras I, De Maeztu MA, Alava JI, Gay-Escoda C. In vivo low-density bone apposition on different implant surface materials. Int J Oral Maxillofac Surg 2009;38(3):274–278.

Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implant 2010;25(1):63–74.

Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52(2):155–70.

Fröjd V, Wennerberg A, Franke Stenport V. Importance of Ca(2+) modifications for osseointegration of smooth and moderately rough anodized titanium implants - a removal torque and histological evaluation in rabbit. Clin Implant Dent Relat Res 2012;14(5):737–45.

Javed F, Ahmed HB, Crespi R, Romanos GE. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv Med Appl Sci 2013;5(4):162–167.

Ogle ME, Segar CE, Sridhar S, Botchwey EA. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp Biol Med 2016;241(10):1084–1097.

Naert I, Duyck J, Vandamme K. Occlusal overload and bone/implant loss. Clin Oral Implants Res 2012;23(SUPPL.6):95–107.

Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17(5):536–543.

Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research 2009;20(SUPPL. 4):172–184.

Rosa MB, Albrektsson T, Francischone CE, Filho HOS, Wennerberg A. Micrometric characterization of the implant surfaces from the five largest companies in Brazilian market. Part I: Neodent Implants. Dent Press Implantol 2012;6(1):76–87.

Rosa MB, Albrektsson T, Francischone CE, Filho HOS, Wennerberg A. Micrometric characterization of the implant surfaces from the five largest companies in Brazil, the second largest worldwide implant market. Int J Oral Maxillofac Implants 2013;28(2):358–65.

Kaplonek W, Nadolny K. Advanced 3D laser microscopy for measurements and analysis of vitrified bonded abrasive tools. J Eng Sci Technol 2012;7(6):661–678.

Dohan Ehrenfest DM, Vazquez L, Park Y-J, Sammartino G, Bernard J-P. Identification Card and Codification of the Chemical and Morphological Characteristics of 14 Dental Implant Surfaces. J Oral Implantol 2011;37(5):525–542.

Morra M, Cassinelli C, Bruzzone G, Carpi A, Di Santi G, Giardino R, Fini M. Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. Int J Oral Maxillofac Implants 2003;18(1):40–5.

Kang B-S, Sul Y-T, Oh S-J, Lee H-J, Albrektsson T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater 2009;5(6):2222–9.

Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 2000;15(3):331–44.

Bertolini M, Portella MB, Telles DM, Lourenco EJ V. The influence of implant surface properties with soft tissue response and biofilm formation. Implant News 2011;8(3):307–312.

Buser D, Broggini N, Wieland M, Schenk RKK, Denzer AJJ, Cochran DLL, Hoffmann B, Lussi A, Steinemann SGG, 1Department. Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface. Implant News 2011;8(3):307–312.

Oshida Y, Tuna EB, Aktören O, Gençay K. Dental Implant Systems. Int J Mol Sci 2010;11(12):1580–1678.

Gerzson A da S, Peres CA, Rosa MB, Fetter EP, Marchioni LA. Surfaces in Implantology : Characteristics of the main Brazilian implants. Dent Press Implantol 2013;7(4):46–51.

Teixeira HS, Marin C, Witek L, Freitas A, Silva NRF, Lilin T, Tovar N, Janal MN, Coelho PG. Assessment of a chair-side argon-based non-thermal plasma treatment on the surface characteristics and integration of dental implants with textured surfaces. J Mech Behav Biomed Mater 2012;945–49.

Neodent. Catálogo Neodent. Neodent 2017;11–212. (2017, accessed January 4, 2018).

Sartoretto SC, Alves ATNN, Resende RFB, Calasans-Maia J, Granjeiro JM, Calasans-Maia MD. Early osseointegration driven by the surface chemistry and wettability of dental implants. J Appl Oral Sci 2015;23(3):279–87.

Chrcanovic BR, Pedrosa AR, Martins MD. Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants. Mater Res 2012;15(3):372–382.

d’Avila S, dos Reis LD, Piattelli A, Aguiar KCS, de Faveri M, Borges FL, Iezzi G, Oliveira NTC, de G. Cardoso LA, Shibli JA. Impact of Smoking on Human Bone Apposition at Different Dental Implant Surfaces: A Histologic Study in Type IV Bone. J Oral Implantol 2010;36(2):85–90.

Baena RRY, Arciola CR, Selan L, Battaglia R, Imbriani M, Rizzo S, Visai L. Evaluation of Bacterial Adhesion on Machined Titanium, Osseotite ® and Nanotite ® Discs. Int J Artif Organs 2012;35(10):754–761.

Moretti L, Consolaro A, Bel A, Jr N, Souza SS De. Microtopography of titanium implants with different surface treatments from scanning electron microscopy and atomic force microscopy. Clin Oral Implants Res 2015;262015.

Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res - Part A 2005;74(1):49–58.




How to Cite

Carmo Filho LC do, Martins APP, Bielemann AM, Possebon AP da R, Faot F. Simplified micrometric surface characterization of different implant surfaces available on the Brazilian market. Braz. J. Oral Sci. [Internet]. 2018 Jul. 16 [cited 2022 Aug. 10];17:e18371. Available from:

Most read articles by the same author(s)