Influence of furnace type in the crystallization of lithium disilicate on bond strength and flexural strength

  • Karla Zancope School of Dentistry, Federal University of Uberlândia
  • Thácio de Castro
  • Lucas do Nascimento Tavares School of Dentistry, Federal University of Uberlândia
  • Marcel Santana Prudente School of Dentistry, Faculty of Patos de Minas
  • Flávio Domingues das Neves School of Dentistry, Federal University of Uberlândia
Keywords: Ceramics, Shear strength, Lithium compounds.

Abstract

Aim: The crystallization step is required for lithium disilicate ceramics to change color, improve the mechanical properties and yield material to support mouth loading. Several furnaces could complete the crystallization process. This study evaluated the flexural and bond strength of lithium disilicate ceramics crystallized by different furnaces with the presence or not of vacum and different holding time. Methods: Forty lithium disilicate samples were divided into two groups: Programat P300 - control group with vacuum and holding time 7 minutes (CG) and FVPlus- experimental group and without vacuum and holding time 25 minutes (EG) and submitted to 2 experimental tests: 3-point flexural strength test and micro shear bond strength test (µSBS). For this test, the surface of the samples was treated and 1mm² of resin cement was applied on the surface. The samples were stored in artificial saliva over 2 time periods (24 hours: T0; 1-month storage: T1). To analyze the morphologic crystals of the ceramics tested, one representative specimen from each group were analyzed by using Scanning Electron Microscopy (SEM). Results: There was no significant difference in 3-point flexural strength test between groups CG and EG (p= 0.984). The µSBS results showed no statistical difference between groups, considering different storage time. There was no difference in the 3-point flexural strength and μSBS for lithium disilicate samples regardless of heat treatment of furnace type. The storage time had no influence on the μSBS. No differences were noted in the shape and size of these crystals when comparing the furnace analyzed by SEM images. Conclusion: Different furnaces did not influence the flexural and bond strength of lithium disilicate ceramics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Karla Zancope, School of Dentistry, Federal University of Uberlândia
Department of Occlusion, Fixed Prosthesis and Dental Materials
Thácio de Castro
Clinical Practice
Lucas do Nascimento Tavares, School of Dentistry, Federal University of Uberlândia
Department of Occlusion, Fixed Prosthesis and Dental Materials
Marcel Santana Prudente, School of Dentistry, Faculty of Patos de Minas
Department of Prosthesis
Flávio Domingues das Neves, School of Dentistry, Federal University of Uberlândia
Department of Occlusion, Fixed Prosthesis and Dental Materials

References

Pjetursson BE, Sailer I, Zwahlen M, Hämmerle CH. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin Oral Implants Res. 2007;18 Suppl 3:73-85. Review. Erratum in: Clin Oral Implants Res. 2008;19(3):326-8.

Pagani C, Miranda CB, Bottino MC. Relative fracture toughness of different dental ceramics. J Appl Oral Sci. 2003;11(1):69-75.

Della Bona A, Kelly JR. The clinical success of all-ceramic restorations. J Am Dent Assoc. 2008;139 Suppl:8S-13S.

Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc. 2010;141 Suppl 2:10S-4S.

Sorensen JA, Cruz M, Mito WT, Raffeiner O, Meredith HR, Foser HP. A clinical investigation on three-unit fixed partial dentures fabricated with a lithium disilicate glass-ceramic. Pract Periodontics Aesthet Dent. 1999;11(1):95-106; quiz 108.

Kheradmandan S, Koutayas SO, Bernhard M, Strub JR. Fracture strength of four different types of anterior 3-unit bridges after thermo-mechanical fatigue in the dual-axis chewing simulator. J Oral Rehabil. 2001;28(4):361-9.

Reich S, Schierz O. Chair-side generated posterior lithium disilicate crowns after 4 years. Clin Oral Investig. 2013;17(7):1765-72. doi: 10.1007/s00784-012-0868-0.

Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent. 2014;112(1):22-30. doi: 10.1016/j.prosdent.2014.01.005.

Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-35. doi: 10.11607/ijp.4244.

Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and Weibull analysis of selected dental ceramics. J Prosthodont. 2012;21(5):353-62. doi: 10.1111/j.1532-849X.2012.00845.x.

Neves FD, Prado CJ, Prudente MS, Carneiro TA, Zancopé K, Davi LR, et al. Micro-computed tomography evaluation of marginal fit of lithium disilicate crowns fabricated by using chairside CAD/CAM systems or the heat-pressing technique. J Prosthet Dent. 2014;112(5):1134-40. doi: 10.1016/j.prosdent.2014.04.028.

Ritter RG. Multifunctional uses of a novel ceramic-lithium disilicate. J Esthet Restor Dent. 2010;22(5):332-41. doi: 10.1111/j.1708-8240.2010.00362.x.

McLaren EA, Figueira J. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection. Compend Contin Educ Dent. 2015;36(6):400-5; quiz 406, 416.

Borom MP, Turkalo AM, Doremus RH. Strength and microstructure in lithium disilicate glass-ceramics. J Amer Ceram Soc. 1975;58(9-10):385-91. https://doi.org/10.1111/j.1151-2916.1975.tb19004.x.

Höland W, Apel E, van ‘t Hoen C, Rheinberger V. Studies of crystal phase formations in high-strength lithium disilicate glass–ceramics. J Non-Cry Sol. 2006;352(15):38-9. https://doi.org/10.1016/j.jnoncrysol.2006.06.039.

Rekow ED, Silva NR, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res. 2011;90(8):937-52. doi: 10.1177/0022034510391795.

Lien W, Roberts HW, Platt JA, Vandewalle KS, Hill TJ, Chu TM. Microstructural evolution and physical behavior of a lithium disilicate glass-ceramic. Dent Mater. 2015;31(8):928-40. doi: 10.1016/j.dental.2015.05.003.

Lise DP, Perdigão J, Van Ende A, Zidan O, Lopes GC. Microshear Bond Strength of Resin Cements to Lithium Disilicate Substrates as a Function of Surface Preparation. Oper Dent. 2015;40(5):524-32. doi: 10.2341/14-240-L.

Tian T, Tsoi JK, Matinlinna JP, Burrow MF. Aspects of bonding between resin luting cements and glass ceramic materials. Dent Mater. 2014;30(7):e147-62. doi: 10.1016/j.dental.2014.01.017.

Neis CA, Albuquerque NL, Albuquerque Ide S, Gomes EA, Souza-Filho CB, Feitosa VP, et al. Surface treatments for repair of feldspathic, leucite - and lithium disilicate-reinforced glass ceramics using composite resin. Braz Dent J. 2015;26(2):152-5. doi: 10.1590/0103-6440201302447.

Zogheib LV, Bona AD, Kimpara ET, McCabe JF. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz Dent J. 2011;22(1):45-50.

Della Bona A, Anusavice KJ, Mecholsky JJ Jr. Failure analysis of resin composite bonded to ceramic. Dent Mater. 2003;19(8):693-9.

Della Bona A, Anusavice KJ, Shen C. Microtensile strength of composite bonded to hot-pressed ceramics. J Adhes Dent. 2000;2(4):305-13.

Raposo LH, Armstrong SR, Maia RR, Qian F, Geraldeli S, Soares CJ. Effect of specimen gripping device, geometry and fixation method on microtensile bond strength, failure mode and stress distribution: laboratory and finite element analyses. Dent Mater. 2012;28(5):e50-62. doi: 10.1016/j.dental.2012.02.010.

Wegner SM, Gerdes W, Kern M. Effect of different artificial aging conditions on ceramic-composite bond strength. Int J Prosthodont. 2002;15(3):267-72.

Nawafleh N, Hatamleh M, Elshiyab S, Mack F. Lithium Disilicate Restorations Fatigue Testing Parameters: A Systematic Review. J Prosthodont. 2016;25(2):116-26. doi: 10.1111/jopr.12376.

Armstrong S, Geraldeli S, Maia R, Raposo LH, Soares CJ, Yamagawa J. Adhesion to tooth structure: a critical review of "micro" bond strength test methods. Dent Mater. 2010;26(2):e50-62. doi: 10.1016/j.dental.2009.11.155.

Moharamzadeh K, Hooshmand T, Keshvad A, Van Noort R. Fracture toughness of a ceramic-resin interface. Dent Mater. 2008;24(2):172-7.

Hooshmand T, Rostami G, Behroozibakhsh M, Fatemi M, Keshvad A, van Noort R. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic. J Dent. 2012;40(2):139-45. doi: 10.1016/j.jdent.2011.12.005.

Jin J, Takahashi H, Iwasaki N. Effect of test method on flexural strength of recent dental ceramics. Dent Mater J. 2004;23(4):490-6.

Yen TW, Blackman RB, Baez RJ. Effect of acid etching on the flexural strength of a feldspathic porcelain and a castable glass ceramic. J Prosthet Dent. 1993;70(3):224-33.

Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):e495-500. doi: 10.4317/jced.52521.

Phrukkanon S, Burrow MF, Tyas MJ. Effect of cross-sectional surface area on bond strengths between resin and dentin. Dent Mater. 1998;14(2):120-8.

Published
2019-04-30
How to Cite
Zancope, K., Castro, T. de, Tavares, L. do N., Prudente, M. S., & Neves, F. D. das. (2019). Influence of furnace type in the crystallization of lithium disilicate on bond strength and flexural strength. Brazilian Journal of Oral Sciences, 18, e191405. https://doi.org/10.20396/bjos.v18i0.8655320