Banner Portal
Evaluation of ceramic flexural strength of a cobalt-chromium alloy subjected to airborne particle abrasion and tungsten inert gas welding
PDF

Keywords

Dental materials
Dental soldering
Dental porcelain.

How to Cite

1.
Monteiro LPB, Issae Sousa Sano, Cunha SR, Klautau EB, Alves BP. Evaluation of ceramic flexural strength of a cobalt-chromium alloy subjected to airborne particle abrasion and tungsten inert gas welding. Braz. J. Oral Sci. [Internet]. 2019 Sep. 10 [cited 2024 Jul. 3];18:e191443. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8656599

Abstract

Aim: The aim of this study was to evaluate the influence of tungsten inert gas (TIG) welding and airborne particle abrasion using aluminum oxide particles on the flexural strength of a joint between ceramic and cobalt-chromium alloys. Methods: The specimens were cast and welded using TIG, then divided into 6 groups (n = 10) and subjected to blasting with 250 μm, 100 μm, and 50 μm aluminum oxide particles. Ceramic systems were applied to the central part of all specimens. A three-point bending test using a velocity of 0.5 mm/m was performed on the specimens to measure flexural strength. Data were analyzed using two-way analysis of variance and Tukey’s test. Results: TIG welding demonstrated the lowest resistance compared with the non-welded groups. Airborne particle abrasion using 250 μm aluminum oxide particles demonstrated greater resistance in the welded groups (p < 0.05). Mixed faults were found in all specimens. Conclusion: TIG welding decreased the bond strength, and the particle size of aluminum oxide did not affect the metal-ceramic bond in groups without TIG welding.

https://doi.org/10.20396/bjos.v18i0.8656599
PDF

References

Patel KA, Mathur S, Upadhyay S. A comparative evaluation of bond strength of feldspathic porcelain to nickel-chromium alloy, when subjected to various surface treatments: An in vitro study. J Indian Prosthodont Soc. 2015 Jan-Mar;15(1):53-7. doi: 10.4103/0972-4052.155036.

Al Bakkar H, Spintzyk S, Schille C, Schweizer E, Geis-Gerstorfer J, Rupp F. Influence of a bonding agent on the bond strength between a dental Co-Cr alloy and nine different veneering porcelains. Biomed Tech. 2016 Oct;61(5):509-17. doi: 10.1515/bmt-2015-0101.

Joias RM, Tango RN, de Araujo JEJ, de Araujo MAJ, de Siqueira Ferreira Anzaloni Saavedra G, de Arruda Paes-Junior TJ, et al. Shear bond strength of a ceramic to Co-Cr alloys. J Prosthet Dent. 2008 Jan;99(1):54-9. doi: 10.1016/S0022-3913(08)60009-8.

Lombardo GH, Nishioka RS, Souza RO, Michida SM, Kojima AN, Mesquita AM, Buso L. Influence of surface treatment on the shear bond strength of ceramics fused to cobalt-chromium. J Prosthodont. 2010 Feb;19(2):103-11. doi: 10.1111/j.1532-849X.2009.00546.x.

Li J, Ye X, Li B, Liao J, Zhuang P, Ye J. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys. Eur J Oral Sci. 2015 Aug;123(4):297-304. doi: 10.1111/eos.12199.

Rathi S, Parkash H, Chittaranjan B, Bhargava A. Oxidation heat treatment affecting metal-ceramic bonding. Indian J Dent Res. 2011Nov-Dec;22(6):877–8. doi: 10.1111/eos.12199.

Pietnicki K, Wołowiec E, Klimek L. The effect of abrasive blasting on the strength of a joint between dental porcelain and metal base. Acta Bioeng Biomech. 2014;16(1):63-8.

Külünk T, Kurt M, Ural Ç, Külünk Ş, Baba S. Effect of different air-abrasion particles on metal-ceramic bond strength. J Dent Sci. 2011 Sep;6(3):140-6.

Oliveira de Vasconcellos LG, Silva LH, Reis de Vasconcellos LM, Balducci I, Takahashi FE, Bottino MA. Effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of glass ceramic fused to gold or cobalt-chromium alloy. J Prosthodont. 2011 Oct;20(7):553-60. doi: 10.1111/j.1532-849X.2011.00761.x.

Minesaki Y, Murahara S, Kajihara Y, Takenouchi Y, Tanaka T, Suzucki S, et al. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy. 2 J Adv Prosthodont. 2016 Feb;8(1):1-8. doi: 10.4047/jap.2016.8.1.1.

Martins JE, Bastos Neto FVR, Duarte DA, Araki ÂT. Assessing different patterns of laser welding with Nickel-Chromium (Ni-Cr) alloy for structures applicable to fixed prosthesis. Braz Dent Sci. 2017 Apr-Jun;20(2):62-9.

Aladaǧ A, Çömlekoǧlu ME, Dündar M, Güngör MA, Artunç C. Effects of soldering and laser welding on bond strength of ceramic to metal. J Prosthet Dent. 2011 Jan;105(1):28-34. doi: 10.1016/S0022-3913(10)60187-4.

Ghadhanfari HA, Khajah HM, Monaco EA, Kim H. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy. J Prosthet Dent. 2014 Oct;112(4):994-1000. doi: 10.1016/j.prosdent.2014.02.015.

Karl M, Winter W, Taylor TD, Heckmann SM. In vitro study on passive fit in implant-supported 5-unit fixed partial dentures. Int J Oral Maxillofac Implants. 2004 Jan-Feb;19(1):30-7.

Wang RR, Welsch GE. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing. J Prosthet Dent. 1995 Nov;74(5):521-30.

Bock JJ, Fraenzel W, Bailly J, Gernhardt CR, Fuhrmann RA. Influence of different brazing and welding methods on tensile strength and microhardness of orthodontic stainless steel wire. Eur J Orthod. 2008 Aug;30(4):396-400. doi: 10.1093/ejo/cjn022.

Matos IC, Bastos IN, Diniz MG, De Miranda MS. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing. J Prosthet Dent. 2015 Aug;114(2):278-85. doi: 10.1016/j.prosdent.2015.01.017.

Graczyk H, Lewinski N, Zhao J, Concha-Lozano N, Riediker M. Characterization of tungsten inert gas (TIG) welding fume generated by apprentice welders. Ann Occup Hyg. 2016 Mar;60(2):205-19. doi: 10.1093/annhyg/mev074.

Atoui JA, Felipucci DNB, Pagnano VO, Orsi IA, de Arruda Nóbilo MA, Bezzon OL. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds. Braz Dent J. 2013 Nov-Dec;24(6):630-4. doi: 10.1590/0103-6440201302241.

Ting S, Li KC, Waddell JN, Prior DJ, van Vuuren LJ, Swain M V. Influence of a tungsten metal conditioner on the adhesion and residual stress of porcelain bonded to cobalt-chromium alloy. J Prosthet Dent. 2014 Sep;112(3):584-90. doi: 10.1016/j.prosdent.2013.12.009.

Pretti M, Hilgert E, Bottino MA, Avelar RP. Evaluation of the shear bond strength of the union between two CoCr-alloys and a dental ceramic. J Appl Oral Sci. 2004 Dec;12(4):280-4.

Simamoto Júnior PC, Resende Novais V, Rodrigues Machado A, Soares CJ, Araújo Raposo LH. Effect of joint design and welding type on the flexural strength and weld penetration of Ti-6Al-4V alloy bars. J Prosthet Dent. 2015 May;113(5):467-74. doi: 10.1016/j.prosdent.2014.10.010.

de Melo RM, Travassos AC, Neisser MP. Shear bond strengths of a ceramic system to alternative metal alloys. J Prosthet Dent. 2005 Jan;93(1):64-9.

Fischer J. Ceramic bonding to a dental gold-titanium alloy. Biomaterials. 2002 Mar;23(5):1303-11.

Anusavice KJ, Ringle RD, Fairhurst CW. Adherence controlling elements in ceramic-metal systems. II. Nonprecious alloys. J Dent Res. 1977 Sep;56(9):1053-61.

Coskun ME, Akar T, Tugut F. Airborne-particle abrasion; searching the right parameter. J Dent Sci. 2018 Dec;13(4):293-300. doi: 10.1016/j.jds.2018.02.002.

MATOS, Adaias Oliveira et al. Comparative analysis of ceramic flexural strength in co-cr and ni-cr alloys joined by TIG welding and conventional brazing. Braz J Oral Sci. 2018 Mar;16:e17049. doi: 10.20396/bjos.v16i0.8650496.

Rocha R, Pinheiro ALB, Villaverde AB. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding. Braz Dent J. 2006 Jan;17(1):20-3.

Galo R, Ribeiro RF, Rodrigues RCS, Pagnano VdeO, Mattos MdaGCde. Effect of laser welding on the titanium composite tensile bond strength. Braz Dent J. 2009;20(5):403-9.

Mehdi AG, Ibrahim AF. Effect of soldering on shear bond strength of porcelain fused to metal (In vitro study). J Baghdad Coll Dent. 2007;19(1):6-10.

Miller LL. Framework design in ceramo-metal restorations. Dent Clin North Am. 1977 Oct;21(4):699-716.

The Brazilian Journal of Oral Sciences uses the Creative Commons license (CC), thus preserving the integrity of the articles in an open access environment.

Downloads

Download data is not yet available.