Enterococcus faecalis and Staphylococcus aureus stimulate nitric oxide production in macrophages and fibroblasts in vitro

Authors

DOI:

https://doi.org/10.20396/bjos.v19i0.8657039

Keywords:

Enterococcus faecalis, Staphylococcus aureus, Fibroblasts, Macrophages, Nitric oxide

Abstract

Aim: Nitric oxide (NO) is an important mediator related to damage of the pulp tissue and at the same time to regenerative pulp processes. However, it is not clear how common endodontic microorganisms can regulate this mediator. This study aimed to investigate NO production by macrophages and fibroblasts against Enterococcus faecalis- and Staphylococcus aureus-antigens. Methods: RAW 264.7 macrophages and L929 fibroblast cell lines were stimulated with different heat-killed (HK) antigen concentrations (105-108 colony forming units - CFU) from E. faecalis and S. aureus with or without interferon-gamma (IFN-γ). Cell viability by MTT colorimetric assay and NO production from the culture supernatants were evaluated after 72 h. Results: Data here reported demonstrated that none of the antigen concentrations decreased cell viability in macrophages and fibroblasts. The presence of HK-S. aureus and HK-E. faecalis antigen- stimulated NO production with or without IFN-γ on RAW 264.7. The HK-S. aureus antigen stimulated NO production in L929 fibroblasts with or without IFN-γ, and the highest concentration of HK-E. faecalis with IFN-γ also stimulated NO production by these cells. Conclusion: The amount of NO produced by macrophages and fibroblasts may be involved in the concentration and type of prevalent endodontic microorganisms, generating new answers for the understanding of pulpal revascularization/regeneration processes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Mauricio Gonçalves da Costa Sousa, Catholic University of Brasilia

Post-Graduation in Genomic Sciences and Biotechnology, Catholic University of Brasilia.

Patricia Diniz Xavier, Catholic University of Brasilia

Post-Graduation in Genomic Sciences and Biotechnology, Catholic University of Brasilia.

Stella Maris de Freitas Lima, Catholic University of Brasilia

Post-Graduation in Genomic Sciences and Biotechnology, Catholic University of Brasilia.

Jeeser Alves de Almeida, Catholic University of Brasilia

Post-Graduation in Genomic Sciences and Biotechnology, Catholic University of Brasilia.

Octávio Luiz Franco, Catholic University of Brasilia

Post-Graduation in Genomic Sciences and Biotechnology, Catholic University of Brasilia.

Taia Maria Berto Rezende, Catholic University of Brasilia

Post-Graduation in Genomic Sciences and Biotechnology, Catholic University of Brasilia.

References

- Yang J, Yuan G, Chen Z. Pulp regeneration: current approaches and future challenges. Front Physiol. 2016 Mar 7;7:58. doi: 10.3389/fphys.2016.00058. eCollection 2016.

- Galler, KM Clinical procedures for revitalization: current knowledge and considerations. Int Endod J. 2016 Oct;49(10):926-36. doi: 10.1111/iej.12606.

- Dhillon H., Kaushik M, Sharma R. Regenerative endodontics - Creating new horizons. J Biomed Mater Res B Appl Biomater. 2016 May;104(4):676-85. doi: 10.1002/jbm.b.33587.

- Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002 Aug;81(8):531-5.

- Martinez Saez D, Sasaki RT, Neves AD, da Silva MC. Stem Cells from Human Exfoliated Deciduous Teeth: A Growing Literature. Cells Tissues Organs. 2016;202(5-6):269-80

- Antunes, LS, Salles AG, Gomes CC, Andrade TB, Delmindo MP, Antunes LA. The effectiveness of pulp revascularization in root formation of necrotic immature permanent teeth: A systematic review. Acta Odontol Scand. 2016;74(3):161-9. doi: 10.3109/00016357.2015.1069394.

- Torabinejad M, Faras H, Corr R, Wright KR, Shabahang S. Histologic examinations of teeth treated with 2 scaffolds: a pilot animal investigation. J Endod. 2014 Apr;40(4):515-20. doi: 10.1016/j.joen.2013.12.025.

- Nagata JY, Soares AJ, Souza-Filho FJ, Zaia AA, Ferraz CC, Almeida JF, et al. Microbial evaluation of traumatized teeth treated with triple antibiotic paste or calcium hydroxide with 2% chlorhexidine gel in pulp revascularization. J Endod. 2014 Jun;40(6):778-83. doi: 10.1016/j.joen.2014.01.038.

- De Couto Pita A, Passafaro D, Ganzinelli S, Borda E, Sterin-Borda L. Differential cholinoceptor modulation of nitric oxide isoforms in experimentally-induced inflammation of dental pulp tissue. Int Endod J. 2009 Jun;42(6):525-33. doi: 10.1111/j.1365-2591.2009.01549.x.

- Lima SM., Sousa MG, Freire Mde S, de Almeida JA, Cantuária AP, Silva TA, et al. Immune Response Profile against Persistent Endodontic Pathogens Candida albicans and Enterococcus faecalis In Vitro. J Endod. 2015 Jul;41(7):1061-5. doi: 10.1016/j.joen.2015.02.016.

- Kaushik SN, Kim B, Walma AM, Choi SC, Wu H, Mao JJ, et al. Biomimetic microenvironments for regenerative endodontics. Biomater Res. 2016 Jun 2;20:14. doi: 10.1186/s40824-016-0061-7.

- Lee SI, Kang SK, Jung HJ, Chun YH, Kwon YD, Kim EC. Muramyl dipeptide activates human beta defensin 2 and pro-inflammatory mediators through Toll-like receptors and NLRP3 inflammasomes in human dental pulp cells. Clin Oral Investig. 2015 Jul;19(6):1419-28. doi: 10.1007/s00784-014-1361-8.

- Farges JC, Bellanger A, Ducret M, Aubert-Foucher E, Richard B, Alliot-Licht B, et al. Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation. Front Physiol. 2015 Jun 23;6:185. doi: 10.3389/fphys.2015.00185.

- Rezende TM, Vieira LQ, Cardoso FP, Oliveira RR, de Oliveira Mendes ST, Jorge ML, et al. The effect of mineral trioxide aggregate on phagocytic activity and production of reactive oxygen, nitrogen species and arginase activity by M1 and M2 macrophages. Int Endod J. 2007 Aug;40(8):603-11.

- Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol. 2016 Dec;205(6):603-13.

- Choi, EJ, Iwasa M, Han KI, Kim WJ, Tang Y, Hwang YJ, et al. Heat-Killed Enterococcus faecalis EF-2001 Ameliorates Atopic Dermatitis in a Murine Model. Nutrients. 2016 Mar 5;8(3):146. doi: 10.3390/nu8030146.

- Green, LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131-8.

- Diogenes A, Ruparel NB, Shiloah Y, Hargreaves KM. Regenerative endodontics: a way forward. J Am Dent Assoc. 2016 May;147(5):372-80. doi: 10.1016/j.adaj.2016.01.009.

- Baumotte K, Bombana AC, Cai S. Microbiologic endodontic status of young traumatized tooth. Dent Traumatol. 2011 Dec;27(6):438-41. doi: 10.1111/j.1600-9657.2010.00903.x.

- Rocas IN, Siqueira JF, Jr., Santos KR. Association of Enterococcus faecalis with different forms of periradicular diseases. J Endod. 2004 May;30(5):315-20.

- Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol. 2015 Oct 27;6:1174. doi: 10.3389/fmicb.2015.01174.

- Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013;64:175-88. doi: 10.1146/annurev-med-042711-140023.

- Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka. A Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol. 2014 Feb;59(2):167-75. doi: 10.1016/j.archoralbio.2013.11.008.

- Scalise A, Bianchi A, Tartaglione C, Bolletta E, Pierangeli M, Torresetti M, et al. Microenvironment and microbiology of skin wounds: the role of bacterial biofilms and related factors. Semin Vasc Surg. 2015 Sep-Dec;28(3-4):151-9. doi: 10.1053/j.semvascsurg.2016.01.003.

- Yue C, van der Mei HC, Kuijer R, Busscher HJ, Rochford ET. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination. J Biomed Mater Res A. 2015 Nov;103(11):3590-8. doi: 10.1002/jbm.a.35502.

- Kim NJ, Ahn KB, Jeon JH, Yun CH, Finlay BB, Han SH. Lipoprotein in the cell wall of Staphylococcus aureus is a major inducer of nitric oxide production in murine macrophages. Mol Immunol. 2015 May;65(1):17-24. doi: 10.1016/j.molimm.2014.12.016.

- Lee S, Zhang QZ, Karabucak B, Le AD. DPSCs from Inflamed Pulp Modulate Macrophage Function via the TNF-alpha/IDO Axis. J Dent Res. 2016 Oct;95(11):1274-81. doi: 10.1177/0022034516657817.

- Rufas P, Jeanneau C, Rombouts C, Laurent P, About I. Complement C3a Mobilizes Dental Pulp Stem Cells and Specifically Guides Pulp Fibroblast Recruitment. J Endod. 2016 Sep;42(9):1377-84. doi: 10.1016/j.joen.2016.06.011.

- Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008 Jan;6(1):67-78.

- Miljkovic D, Cvetkovic I, Stosic-Grujicic S, Trajkovic V. Mycophenolic acid inhibits activation of inducible nitric oxide synthase in rodent fibroblasts. Clin Exp Immunol. 2003 May;132(2):239-46.

- Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, et al. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol. 2009 Jan;9(1):127-33. doi: 10.1016/j.intimp.2008.10.014.

- Sriram G, Natu VP, Islam I, Fu X, Seneviratne CJ, Tan KS, et al. Innate Immune Response of Human Embryonic Stem Cell-Derived Fibroblasts and Mesenchymal Stem Cells to Periodontopathogens. Stem Cells International. 2016:8905365. doi: 10.1155/2016/8905365.

- Zidek Z, Farghali H, Kmonickova E. Intrinsic nitric oxide-stimulatory activity of lipoteichoic acids from different Gram-positive bacteria. Nitric Oxide. 2010 Dec;23(4):300-10. doi: 10.1016/j.niox.2010.09.001.

- Lin SK., Kok SH., Lin LD, Wang CC, Kuo MY, Lin CT, et al. Nitric oxide promotes the progression of periapical lesion via inducing macrophage and osteoblast apoptosis. Oral Microbiol Immunol. 2007 Feb;22(1):24-9. doi: 10.1111/j.1399-302X.2007.00316.x.

- Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadowitz PJ, Ignarro L. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res. 1979;5(3):211-24.

- Kimura H, Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol. 2003;50(1):49-59.

- Speranza L, Pesce M, Franceschelli S, Mastrangelo F, Patruno A, De Lutiis MA, et al. The role of inducible nitric oxide synthase and haem oxygenase 1 in growth and development of dental tissue'. Cell Biochem Funct. 2012 Apr;30(3):217-23. doi: 10.1002/cbf.1838.

- Iglesias-Linares A and Hartsfield JK. Cellular and Molecular Pathways Leading to External Root Resorption. J Dent Res. 2017 Feb;96(2):145-52. doi: 10.1177/0022034516677539.

- Srivastava M, Saqib U, Naim A, Roy A, Liu D, Bhatnagar D, et al. The TLR4-NOS1-AP1 signaling axis regulates macrophage polarization. Inflamm Res. 2017 Apr; 66(4):323-34. doi: 10.1007/s00011-016-1017-z.

- Baik JE, Jang KS, Kang SS, Yun CH, Lee K, Kim BG, et al. Calcium hydroxide inactivates lipoteichoic acid from Enterococcus faecalis through deacylation of the lipid moiety. J Endod. 2011 Feb;37(2):191-6. doi: 10.1016/j.joen.2010.11.007.

- Majka G, Więcek G, Śróttek M, Śpiewak K, Brindell M, Koziel J, et al. The impact of lactoferrin with different levels of metal saturation on the intestinal epithelial barrier function and mucosal inflammation. Biometals. 2016 Dec;29(6):1019-1033. doi: 10.1007/s10534-016-9973-x.

- Gao YL, Chai YF, Qi AL , Yao Y, Liu YC, Dong N, et al. Neuropilin-1highCD4(+)CD25(+) Regulatory T Cells Exhibit Primary Negative Immunoregulation in Sepsis. Mediators Inflamm. 2016;2016:7132158. doi: 10.1155/2016/7132158.

- Chaves, CA., Vergani CE, Thomas D , Young A, Costa CA, Salih VM, et al. Biological effects of soft denture reline materials on L929 cells in vitro. J Tissue Eng. 2014 Jun 23;5:2041731414540911. doi: 10.1177/2041731414540911.

- Miljkovic D, Cvetkovic I, Sajic M, Vuckovic O, Harhaji L, Markovic M, et al. 5-Aza-2'-deoxycytidine and paclitaxel inhibit inducible nitric oxide synthase activation in fibrosarcoma cells. Eur J Pharmacol. 2004 Feb 6;485(1-3):81-8. doi: 10.1016/j.ejphar.2003.11.057.

- Sipert CR, Moraes IG, Bernardinelli N , Garcia RB, Bramante CM, Gasparoto TH, et al. Heat-killed Enterococcus faecalis alters nitric oxide and CXCL12 production but not CXCL8 and CCL3 production by cultured human dental pulp fibroblasts. J Endod. 2010 Jan;36(1):91-4. doi: 10.1016/j.joen.2009.10.014.

- Zhang X, Aubin JE, Kim TH, Payne U, Chiu B, Inman RD. Synovial fibroblasts infected with Salmonella enterica serovar Typhimurium mediate osteoclast differentiation and activation. Infect Immun. 2004 Dec;72(12):7183-9. doi: 10.1128/IAI.72.12.7183-7189.2004.

Downloads

Published

2020-05-11

How to Cite

1.
Sousa MG da C, Xavier PD, Lima SM de F, Almeida JA de, Franco OL, Rezende TMB. Enterococcus faecalis and Staphylococcus aureus stimulate nitric oxide production in macrophages and fibroblasts in vitro. Braz. J. Oral Sci. [Internet]. 2020May11 [cited 2020Oct.31];190:e207039. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8657039