Banner Portal
Stress distribution in the peri-implant area of pure titanium and titanium-zirconium small implants
PDF

Keywords

Dental implants
Dental stress analysis
Stress, mechanical.

How to Cite

1.
Sabino T de A, Silva-Concílio LR da, Neves ACEC, Claro APRA, Amaral M, Vitti RP, et al. Stress distribution in the peri-implant area of pure titanium and titanium-zirconium small implants. Braz. J. Oral Sci. [Internet]. 2019 Nov. 12 [cited 2024 Jun. 30];18:e191505. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8657252

Abstract

Aim: In dental implant treatment, there is a demand for mechanically stronger implants. Despite the existence of several studies showing the clinical success of narrow diameter implants, most of them are based on pure titanium (cpTi) alloys. There is a few clinical evidences of the success rate of titanium-zirconium (TiZr) narrow diameter implants. The aim of this study was to evaluate the stress distribution in the peri-implant area of narrow diameter cpTi and TiZr implants under axial and oblique loads. Methods: Photoelastic models were produced using epoxy resin (PL2, Vishay Precision Group) from a master model. The implants (cpTi and TiZr; Straumann AG) had 3.3 mm in diameter and 12 mm in height. Loads of 100 N and 200 N were applied to the abutment at angles of 0° (axial), 10°, 20°, and 30° (oblique). A circular polariscope (Eikonal) was used under dark field white-light configuration. The isochromatic fringes were analyzed in the peri-implant region in 5 areas, using ASTM table with isochromatic fringes; cervical-mesial, cervical-distal, mid-mesial, mid-distal and apical. Results: In general, under axial and oblique loads, the stress in the TiZr implant was lower than in the cpTi implant. The load of 200 N produced the highest stress values in cpTi and TiZr implants. In both implants and loads, the fringes were located more in apical area at all angles evaluated. Conclusion: It can be concluded that for small implants, the load inclination and intensity change the pattern of stress distribution and the cpTi implant exhibited the highest peri-implant stress.

https://doi.org/10.20396/bjos.v18i0.8657252
PDF

References

Allum SR, Tomlinson RA, Joshi R. The impact of loads on standard diameter, small diameter and mini implants: a comparative laboratory study. Clin Oral Implants Res. 2008 Jun;19(6):553-9. doi: 10.1111/j.1600-0501.2007.01395.x.

Taddei EB, Henriques VAR, Silva CRM, Cairo CAA. Production of new titanium alloy for orthopedic implants. Mater Sci Eng C. 2004 Nov;24(5):683-7.

Li SJ, Yang R, Niinomi M, Hao YL, Cui YY. Formation and growth of calcium phosphate on the surface of oxidized Ti-29Nb-13Ta-4.6Zr alloy. Biomaterials. 2004 Jul; 25(13):2525-32.

Grandin HM, Berner S, Dard M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Materials. 2012 Aug;5(8):1348-60.

Kobayashi E, Matsumoto S, Doi H, Yoneyama T, Hamanaka H. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials. J Biomed Mater Res. 1995 Aug;29(8):943-50.

Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties and grindability of dental Ti-Zr alloys. J Mater Sci Mater Med. 2008 Oct;19(10):3179-86. doi: 10.1007/s10856-008-3454-x.

Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003 Sep;4(5):445-54.

Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopedic implants – A review. Prog Mater Sci. 2009 May;54(3):397-425.

Correa DR, Vicente FB, Donato TA, Arana-Chavez VE, Buzalaf MA, Grandini CR. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications. Mater Sci Eng C Mater Biol Appl. 2014 Jan;34:354-9.

Sohrabi K, Mushantat A, Esfandiari S, Feine J. How successful are small-diameter implants? A literature review. Clin Oral Implants Res. 2012 May;23(5):515-25. doi: 10.1111/j.1600-0501.2011.02410.x.

Park YJ, Song YH, An JH, Song HJ, Anusavice KJ. Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. J Dent. 2013 Dec;41(12):1251-8. doi: 10.1016/j.jdent.2013.09.003.

Bernhard N, Berner S, De Wild M, Wieland M. The binary TiZr Alloy - a newly developed Ti alloy for use in dental implants. Forum Implantol. 2009 Jan;5:30-9.

Claro CAA, Chagas RV, Neves AC, Silva-Concílio LR. Comparative photoelastic study of dental and skeletal anchorages in the canine retraction. Dental Press J Orthod. 2014 Jan-Feb;19(1):100-5.

Meijer HJ, Kuiper JH, Starmans FJ, Bosman F. Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible. J Prosthet Dent. 1992 Jul;68(1):96-102.

Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2003 May-Jun;18(3):357-68.

Torres EM, Barbosa GA, Bernardes SR, de Mattos Mda G, Ribeiro RF. Correlation between vertical misfits and stresses transmitted to implants from metal frameworks. J Biomech. 2011 Jun 3;44(9):1735-9. doi: 10.1016/j.jbiomech.2011.03.032.

Goiato MC, Sarauza Arsufi G, de Medeiros RA, Pesqueira AA, da Silva EVF, Sonego MV, et al. Stress distribution of different implant connections associated with multiple implant-supported prostheses. J Med Eng Technol. 2018 Jul;42(5):359-67. doi: 10.1080/03091902.2018.1513575.

Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008 Dec;100(6):422-31. doi: 10.1016/S0022-3913(08)60259-0.

Eser A, Tonuk E, Akca K, Dard MM, Cehreli MC. Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. J Biomech. 2013 Sep 3;46(13):2250-7. doi: 10.1016/j.jbiomech.2013.06.025.

Balfour A, O’Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent. 1995 Jan;73(1):36-43.

Grandin HM, Berner S, Dard M. A review of titanium zirconium (tizr) alloys for use in endosseous dental implants. Materials (Basel). 2012 Aug;5(8):1348-60. doi: 10.3390/ma5081348.

Osman RB, Swain MV. A Critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015 Mar;8(3):932-58. doi: 10.3390/ma8030932.

Wu AY, Hsu JT, Huang HL. An in vitro biomechanical evaluation of a new commercial titanium-zirconium alloy dental implant: a pilot study. Implant Dent. 2014 Oct;23(5):534-8. doi: 10.1097/ID.0000000000000108.

Calderon-Moreno JM, Vasilescu C, Drob SI, Ivanescu S, Osiceanu P, Drob P, et al. Microstructural and mechanical properties, surface and electrochemical characterisation of a new Ti–Zr–Nb alloy for implant applications. J Alloys Compd. 2014 Nov;612:398-410. doi: 10.1016/j.jallcom.2014.05.159.

Wen B, Zhu F, Li Z, Zhang P, Lin X, Dard M. The osseointegration behavior of titanium–zirconium implants in ovariectomized rabbits. Clin Oral Implants Res. 2014 Jul;25(7):819-25. doi: 10.1111/clr.12141.

Barter S, Stone P, Brägger U. A pilot study to evaluate the success and survival rate of titanium–zirconium implants in partially edentulous patients: results after 24 months of follow-up. Clin Oral Implants Res. 2012 Jul;23(7):873-81. doi: 10.1111/j.1600-0501.2011.02231.x.

Pellizzer EP, Tonella BP, Ferraço R, Falcón-Antenucci RM, de Carvalho PS, Alves-Rezende MC. Photoelastic stress analysis in screwed and cemented implant-supported dentures with external hexagon implants. J Craniofac Surg. 2010 Jul;21(4):1110-3. doi: 10.1097/SCS.0b013e3181e1b46e.

Akça K, Çehreli MC. A photoelastic and strain-gauge analysis of interface force transmission of internal-cone implants. Int J Periodontics Restorative Dent. 2008 Aug;28(4):391-9.

Sotto-Maior BS, Senna PM, da Silva-Neto JP, de Arruda Nóbilo MA, Del Bel Cury AA. Influence of crown-to-implant ratio on stress around single short-wide implants: a photoelastic stress analysis. J Prosthodont. 2015 Jan;24(1):52-6. doi: 10.1111/jopr.12171.

The Brazilian Journal of Oral Sciences uses the Creative Commons license (CC), thus preserving the integrity of the articles in an open access environment.

Downloads

Download data is not yet available.