Banner Portal
Different fabrication techniques of implant-supported prostheses
PDF

Keywords

Dental implants
Prosthodontics
Computer-aided design
Flexural strength.

How to Cite

1.
Borges SM, Poole SF, Moris ICM, Spazzin AO, Faria ACL, Gomes EA. Different fabrication techniques of implant-supported prostheses: microhardness and fracture strength. Braz. J. Oral Sci. [Internet]. 2019 Nov. 12 [cited 2024 Apr. 19];18:e191573. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8657254

Abstract

Aim: This study evaluated the mechanical behavior of implant-supported crowns obtained by different fabrication technique after thermomechanical cycling. Methods: Thirty-two external hexagon dental implants were divided into four groups (n=10): CC – conventional casting with torch; EI – electromagnetic induction casting; PL – plasma casting; and CAD-CAM – milling through computer-aided design and computer-aided manufacturing. Vickers microhardness of the specimens were made before and after the thermomechanical cycling, and then subjected to fracture load. Fracture pattern was evaluated. Results: No significant difference was observed comparing the microhardness before and after thermomechanical cycling. CAD-CAM group presented significant lower microhardness than the other groups. No significant statistical difference was showed on fracture load between the groups. The CAD-CAM and PL presented lower number of failure by plastic deformation. Conclusion: The manufacturing techniques affected the mechanical behavior and the failure pattern of implant-supported crowns tested.

https://doi.org/10.20396/bjos.v18i0.8657254
PDF

References

1. Pompa G, Di Carlo S, De Angelis F, Cristalli MP, Annibali S. Comparison of conventional methods and laser-assisted rapid prototyping for manufacturing fixed dental prostheses: an in vitro study. BioMed Res Int. 2015 Oct; 2015:318097. doi: 10.1155/2015/318097.

2. Walton TR. An up to 15-year longitudinal study of 515 metal-ceramic FPDs: Part 1. Outcome. Int. J. Prosthodont. 2002 Sep-Oct;15(5):439-45.

3. Andreiuolo RF, Sabrosa CE, Dias KR. Dual-scan technique for the customization of zirconia computer-aided design/computer-aided manufacturing frameworks. Eur J Dent. 2013 Sep;7(Suppl 1):S115-8. doi: 10.4103/1305-7456.119088.

4. Thompson GA, Luo Q, Hefti A. Analysis of four dental alloys following torch/centrifugal and induction/vaccum-pressure casting procedures. J Prosthet Dent. 2013 Dec;110(6):471-80. doi: 10.1016/j.prosdent.2013.09.001.

5. Gómez-Cogolludo P, Castillo-Oyagüe R, Lynch CD, Suárez-García MJ. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns. J Dent. 2013 Sep;41(9):826-31. doi: 10.1016/j.jdent.2013.06.007.

6. Beuer F, Aggstaller H, Edelhoff D, Gernet W, Sorensen J. Marginal and internal fits of fixed dental prostheses zirconia retainers; Dent Mater. 2009 Jan;25(1):94-102. doi: 10.1016/j.dental.2008.04.018.

7. Kohorst P, Junghanns J, Dittmer MP, Borchers L, Stiesch M. Different CAD/CAM processing routes for zirconia restorations: influence on fitting accuracy. Clin Oral Investig. 2011 Aug;15(4):527-36. doi: 10.1007/s00784-010-0415-9.

8. Assunção WG, Barão VA, Delben JA, Gomes ÉA, Garcia IR Jr. Effect of unilateral misfit on preload of retention screws of implant-supported prostheses submitted to mechanical cycling. J Prosthodont Res. 2011 Jan;55(1):12-8. doi: 10.1016/j.jpor.2010.05.002.

9. Coppedê AR, Bersani E, de Mattos MdaG, Rodrigues RC, Sartori IA, Ribeiro RF. Fracture resistance of the implant-abutment connection in implants with internal hex and internal conical connections under oblique compressive loading: an in vitro study. Int J Prosthodont. 2009 May-Jun; 22(3):283-6.

10. Beuer F, Naumann M, Gernet W, Sorensen JA. Precision of fit: zirconia three-unit fixed dental prostheses. Clin Oral Investig. 2009 Sep;13(3):343-9. doi: 10.1007/s00784-008-0224-6.

11. Moris ICM, Borges SM, Martins R, Ribeiro RF, Gomes EA. Influence of manufacturing methods of implant-supported crowns on external and internal marginal fit: a micro-CT analysis. Biomed Res. Int. 2018 Jan; 2018:5049605. doi: 10.1155/2018/5049605.

12. Faria ACL, de Oliveira AA, Alves Gomes É, Silveira Rodrigues RC, Faria Ribeiro R. Wear resistance of a pressable low-fusing cerâmica opposed by dental alloys. J Mech Behav Biomed Mater. 2014 Apr;32:46-51. doi: 10.1016/j.jmbbm.2013.12.018.

13. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater. 2014 Apr;30(4):e79-e88. doi: 10.1016/j.dental.2014.01.008.

14. Kuroshima S, Nakano T, Ishimoto T, Sasaki M, Inoue M, Yasutake M, et al. Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading. Acta Biomater. 2017 Jan;48:433-44. doi: 10.1016/j.actbio.2016.11.021.

15. Okeson JP. Management of temporomandibular disorders and occlusion. Saint Louis: Mosby-year book; 1998.

16. Nishigawa K, Bando E, Nakano M. Quantitative study of bite force during sleep associated bruxism. J. Oral Rehabil. 2001 May;28(5):485-91.

17. Jemt T, Book K, Lindén B, Urde G. Failures and complications in 92 consecutively inserted overdentures supported by Brånemark implants in severely resorbed edentulous maxillae: a study from prosthetic treatment to first annual check-up. Int J Oral Maxillofac Implants. 1992 Summer;7(2):162-7.

18. Levine RA, Clem DS3rd, Wilson TGJr, Higginbottom F, Saunders SL. A multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: preliminary results at 6 or more months of loading. Int. J. Oral Maxillofac. Implants. 1997 Mar-Apr;12(2):237-42.

19. Kishen A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Top. 2006 Mar;13(1):57-83.

20. Att W, Kurun S, Gerds T, Strub JR. Fracture resistance of single-tooth implant-supported all-ceramic restorations: an in vitro study. J Prosthet Dent. 2006 Feb;95(2):111-6.

21. Truninger TC, Philipp AO, Siegenthaler DW, Roos M, Hämmerle CH, Jung RE. A prospective, controlled clinical trial evaluating the clinical and radiological outcome after 3 years of immediately placed implants in sockets exhibiting periapical pathology. Clin Oral Implants Res. 2011 Jan;22(1):20-7. doi: 10.1111/j.1600-0501.2010.01973.x.

22. Sghaireen MG. Fracture resistance and mode of failure of ceramic versus titanium implant abutments and single implant-supported restorations. Clin Implant Dent Relat Res. 2015 Jun;17(3):554-61. doi: 10.1111/cid.12160.

23. Serra-Prat J, Cano-Batalla J, Cabratosa-Termes J, Figueras-Àlvarez O. Adhesion of dental porcelain to cast, milled, and laser-sintered cobalt-chromium alloys: shear bond strength and sensitivity to thermocycling. J Prosthet Dent. 2014 Sep;112(3):600-5. doi: 10.1016/j.prosdent.2014.01.004.

24. Bauer JR, Grande RH, Rodrigues-Filho LE, Pinto MM, Loguercio AD. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?. Braz Oral Res. 2012 May-Jun;26(3):190-6.

25. Chen WC, Teng FY, Hung CC.Characterization of Ni–Cr alloys using different casting techniques and molds. Mater Sci Eng C Mater. Biol. Appl. 2014 Feb;35:231-8. doi: 10.1016/j.msec.2013.11.014.

The Brazilian Journal of Oral Sciences uses the Creative Commons license (CC), thus preserving the integrity of the articles in an open access environment.

Downloads

Download data is not yet available.