Banner Portal
Evaluation of the dislodgement resistance of bioceramic reparative cements placed in a retrograde cavity using a different technique
PDF

Keywords

Calcium compounds
Silicates
Root canal filling materials
Retrograde obturation
Endodontics.

How to Cite

1.
Gokturk H, Ozkocak I, Tan-Ipek S, Demir O. Evaluation of the dislodgement resistance of bioceramic reparative cements placed in a retrograde cavity using a different technique . Braz. J. Oral Sci. [Internet]. 2019 Nov. 18 [cited 2024 Jul. 17];18:e191600. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8657393

Abstract

Aim: Calcium silicate-based fillings have been widely used in surgical endodontic treatment because of hard-tissue conductive and inductive properties. The aim of present study is to investigate the bond strength of different calcium silicate-based fillings in retrograde cavities. Methods: Forty-four maxillary single rooted teeth were endodontically treated. The apical portions of the teeth were removed and root-end cavities were prepared using an ultrasonic tip. The roots were randomly divided into four experimental groups (n = 11) according to the material used; (1) MTA-FILLAPEX, (2) MTA Repair HP, (3) MTA-FILLAPEX+ MTA Repair HP, and (4) MTA Plus. Two horizontal cross sections (1±0.1 mm thick) from each specimen were resected from the apices. These sections were placed in a universal testing machine to evaluate the push-out bond strength force required for dislodgement of the root end filling was recorded. The failure type was also evaluated by using a stereomicroscope. The differences in bond strength were analyzed using the two-way analysis of variance (ANOVA). Results: MTA-FILLAPEX and MTA Plus displayed the lowest and highest dislocation resistance, respectively (P < 0.05). In the apical level, bond strength was significantly higher than the coronal level in all groups except for MTA-FILLAPEX. Mixed failure was prevalent in all groups, except for MTA-FILLAPEX, which showed purely cohesive failures. Conclusions: Investigated calcium silicate-based filling materials showed different bond strength to the root-end cavity. The bond strength was significantly decreased when the prior application of MTA-FILLAPEX before delivery of MTA Repair HP.

https://doi.org/10.20396/bjos.v18i0.8657393
PDF

References

1. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod. 2006 Jul;32(7):601-23.

2. Porter ML, Berto A, Primus CM, Watanabe I. Physical and chemical properties of new-generation endodontic materials. J Endod. 2010 Mar;36(3):524-8. doi:10.1016/j.joen.2009.11.012.

3. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod. 2010 Jan;36(1):16-27. doi: 10.1016/j.joen.2009.09.006.

4. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod. 2010 Feb;36(2):190-202. doi: 10.1016/j.joen.2009.09.010.

5. Gandolfi M, Parrilli A, Fini M, Prati C, Dummer PMH. 3 D micro‐CT analysis of the interface voids associated with T hermafil root fillings used with AH Plus or a flowable MTA sealer. Int Endod J. 2013 Mar;46(3):253-63. doi: 10.1111/j.1365-2591.2012.02124.x.

6. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod. 2006 Jun;32(6):569-72.

7. Torabinejad M, Hong C, McDonald F, Ford TP. Physical and chemical properties of a new root-end filling material. J Endod. 1995 Jul;21(7):349-53.

8. Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int J Endod. 2008 May;41(5):408-17. doi: 10.1111/j.1365-2591.2007.01370.x.

9. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014 Mar;40(3):436-40. doi: 10.1016/j.joen.2013.09.040.

10. Govindaraju L, Neelakantan P, Gutmann JL. Effect of root canal irrigating solutions on the compressive strength of tricalcium silicate cements. Clin Oral Investig. 2017 Mar;21(2):567-571. doi: 10.1007/s00784-016-1922-0.

11. Guimaraes BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. J Appl Oral Sci. 2018 Apr;26:e2017115. doi: 10.1590/1678-7757-2017-0115.

12. Nagas E, Cehreli Z, Uyanik MO, Durmaz V. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials. Braz Oral Res. 2014; 28. pii: S1806-83242014000100256.

13. Sagsen B, Ustün Y, Demirbuga S, Pala K. Push‐out bond strength of two new calcium silicate‐based endodontic sealers to root canal dentine. Int Endod J. 2011 Dec;44(12):1088-91. doi: 10.1111/j.1365-2591.2011.01925.x.

14. Abdal AK, Retief DH. The apical seal via the retrosurgical approach: I. A preliminary study. Oral Surg Oral Med Oral Pathol. 1982 Jun;53(6):614-21.

15. Vivan RR, Guerreiro-Tanomaru JM, Bernardes RA, Reis JMSN, Duarte MAH, Tanomaru-Filho M. Effect of ultrasonic tip and root-end filling material on bond strength. Clin Oral Investig. 2016 Nov;20(8):2007-11.

16. Onay EO, Ungor M, Ari H, Belli S, Ogus E. Push-out bond strength and SEM evaluation of new polymeric root canal fillings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Jun;107(6):879-85. doi: 10.1016/j.tripleo.2009.01.023.

17. Huffman B, Mai S, Pinna L, Weller R, Primus C, Gutmann J, et al. Dislocation resistance of ProRoot Endo Sealer, a calcium silicate‐based root canal sealer, from radicular dentine. Int Endod J. 2009 Jan;42(1):34-46. doi: 10.1111/j.1365-2591.2008.01490.x.

18. Soares CJ, Santana FR, Castro CG, Santos-Filho PC, Soares PV, Qian F, et al. Finite element analysis and bond strength of a glass post to intraradicular dentin: comparison between microtensile and push-out tests. Dent Mater. 2008 Oct;24(10):1405-11. doi:10.1016/j.odontológico.2008.03.004.

19. Pane ES, Palamara JE, Messer HH. Critical evaluation of the push-out test for root canal filling materials. J Endod. 2013 May;39(5):669-73. doi: 10.1016/j.joen.2012.12.032.

20. Formosa L, Mallia B, Camilleri J. Push‐out bond strength of MTA with antiwashout gel or resins. Int Endod J. 2014 May;47(5):454-62. doi: 10.1111/iej.12169.

21. Collares F, Portella F, Rodrigues S, Celeste R, Leitune V, Samuel S. The influence of methodological variables on the push‐out resistance to dislodgement of root filling materials: a meta‐regression analysis. Int Endod J. 2016 Sep;49(9):836-49. doi: 10.1111/iej.12539.

22. do Carmo S, Néspoli F, Bachmann L, Miranda C, Castro‐Raucci L, Oliveira I, et al. Influence of early mineral deposits of silicate‐and aluminate‐based cements on push‐out bond strength to root dentine. Int Endod J. 2018 Jan;51(1):92-101. doi: 10.1111/iej.12791.

23. Silva EJ, Carvalho NK, Zanon M, Senna PM, De-Deus G, Zuolo ML, et al. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement. Braz Oral Res. 2016 Jun 14;30(1). pii: S1806-83242016000100269. doi: 10.1590/1807-3107BOR-2016.vol30.0084.

24. Wuchenich G, Meadows D, Torabinejad M. A comparison between two root end preparation techniques in human cadavers. J Endod. 1994 Jun;20(6):279-82.

25. de Faria-Junior NB, Tanomaru-Filho M, Guerreiro-Tanomaru JM, de Toledo Leonardo R, Berbert FLCV. Evaluation of ultrasonic and ErCr: YSGG laser retrograde cavity preparation. J Endod. 2009 May;35(5):741-4. doi: 10.1016/j.joen.2009.02.007.

26. Reyes-Carmona JF, Felippe MS, Felippe WT. A phosphate-buffered saline intracanal dressing improves the biomineralization ability of mineral trioxide aggregate apical plugs. J Endod. 2010 Oct;36(10):1648-52. doi: 10.1016/j.joen.2010.06.014.

27. Reyhani MF, Ghasemi N, Rahimi S, Milani AS, Mokhtari H, Shakouie S, et al. Push-out bond strength of Dorifill, Epiphany and MTA-Fillapex sealers to root canal dentin with and without smear layer. Iran Endod J. 2014 Fall;9(4):246-50.

28. Aggarwal V, Singla M, Miglani S, Kohli S. Comparative evaluation of push-out bond strength of ProRoot MTA, Biodentine, and MTA Plus in furcation perforation repair. J Conserv Dent. Sep. 2013; 16 (5): 462-5. doi: 10.4103 / 0972-0707.117504.

29. Stefaneli Marques JH, Silva-Sousa YTC, Rached-Júnior FJA, Macedo LMDd, Mazzi-Chaves JF, Camilleri J, et al. Push-out bond strength of different tricalcium silicate-based filling materials to root dentin. Braz Oral Res. 2018 Mar;32:e18. doi: 10.1590/1807-3107bor-2018.vol32.0018.

30. Borges R, Sousa‐Neto M, Versiani M, Rached‐Júnior F, De‐Deus G, Miranda C, et al. Changes in the surface of four calcium silicate‐containing endodontic materials and an epoxy resin‐based sealer after a solubility test. Int Endod J. 2012 May;45(5):419-28. doi: 10.1111/j.1365-2591.2011.01992.x.

31. Tran D, He J, Glickman GN, Woodmansey KF. Comparative Analysis of Calcium Silicate–based Root Filling Materials Using an Open Apex Model. J Endod. 2016 Apr;42(4):654-8. doi: 10.1016/j.joen.2016.01.015.

The Brazilian Journal of Oral Sciences uses the Creative Commons license (CC), thus preserving the integrity of the articles in an open access environment.

Downloads

Download data is not yet available.