Banner Portal
Degree of conversion and water sorption of self-adhesive and conventional flowable composites
PDF

Keywords

Absorption
Composite resins
Polymerization
Vertise flow

How to Cite

1.
Ranjbar Omrani L, Abbasi M, Motevasselian F, Yektaei MA, Najafi F. Degree of conversion and water sorption of self-adhesive and conventional flowable composites: an in vitro study. Braz. J. Oral Sci. [Internet]. 2021 Jan. 4 [cited 2024 Apr. 16];19:e208556. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8658556

Abstract

Aim: Self-adhesive flowable composite resins have been recently introduced to the market. Degree of conversion (DC) and water sorption (WS) are two important parameters affecting the properties of restorative materials. This study aimed to assess the DC and WS of a self-adhesive flowable composite resin in comparison with two conventional flowable composite resins. Methods: Vertise Flow (VF) self-adhesive and Tetric-N Flow (TF) and Grandio Flow (GF) conventional flowable composites were evaluated in this in vitro, experimental study. The DC (n=3) was determined by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The WS (n=7) was measured after 7 days of immersion in artificial saliva according to ISO 4049 specifications. Data were analyzed by one-way ANOVA and a post-hoc test (p<0.05). Results: VF showed the highest DC percentage (84.3%) followed by GF (72.79%) and TF (68.7%). The latter two had no significant difference (p=0.8). WS was the highest in VF (55.2 μg/mm3), and the two conventional flowable composites had a significant difference in WS (19.5 μg/mm3 in TF and 11 μg/mm3 in GF; p<0.001). Conclusions: Flowable composite resins had significant differences in DC and WS, and VF demonstrated the highest DC and WS.

https://doi.org/10.20396/bjos.v19i0.8658556
PDF

References

Pratap B, Gupta RK, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. Japn Dent Sci Rev. 2019 Nov;55(1):126-38. doi: 10.1016/j.jdsr.2019.09.004.

Baroudi K, Saleh AM, Silikas N, Watts DC. Shrinkage behaviour of flowable resin-composites related to conversion and filler-fraction. J Dent Aug. 2007;35(8):651-5. doi: 10.1016/j.jdent.2007.05.001.

Maas MS, Alania Y, Natale LC, Rodrigues MC, Watts DC, Braga RR. Trends in restorative composites research: what is in the future? Braz Oral Res. 2017 Aug;31(suppl 1):e55. doi: 10.1590/1807-3107BOR-2017.

Nagi SM. Durability of solvent-free one-step self-etch adhesive under simulated intrapulpal pressure. J Clinical Exp Dent. 2015 Oct;7(4):e466-70. doi: 10.4317/jced.52307.

El Naga AA, Yousef M, Ramadan R, Bahgat SF, Alshawwa L. Does the use of a novel self-adhesive flowable composite reduce nanoleakage? Clin Cosmet Investig Dent. 2015 Mar;7:55-64. doi: 10.2147/CCIDE.S80462.

Shafiei F, Saadat M. Micromorphology and bond strength evaluation of adhesive interface of a self‐adhering flowable composite resin–dentin: Effect of surface treatment. Microsc Res Tech. 2016 May;79(5):403-7. doi: 10.1002/jemt.22643.

Araújo-Neto V, Nobre C, De Paula D, Souza L, Silva J, Moreira M, et al. Glycerol-dimethacrylate as alternative hydrophilic monomer for HEMA replacement in simplified adhesives. J Mech Behav Biomed Mater. 2018 Jun;82:95-101. doi: 10.1016/j.jmbbm.2018.03.022.

Eliades A, Birpou E, Eliades T, Eliades G. Self-adhesive restoratives as pit and fissure sealants: a comparative laboratory study. Dent Mater. 2013;29(7):752-62. doi: 10.1016/j.dental.2013.04.005.

Jager S, Balthazard R, Dahoun A, Mortier E. Filler content, surface microhardness, and rheological properties of various flowable resin composites. Oper Dent. 2016 Nov/Dec;41(6):655-65. doi: 10.2341/16-031-L.

Moldovan M, Balazsi R, Soanca A, Roman A, Sarosi C, Prodan D, et al. Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials (basel). 2019 Jun;12(13):2109. doi: 10.3390/ma12132109.

Gajewski VE, Pfeifer CS, Fróes-Salgado NR, Boaro LC, Braga RR. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J. 2012;23(5):508-14. doi: 10.1590/s0103-64402012000500007.

Silva J, Rafael CF, Vaz PC, Fernandes JC, Volpato CA. Color stability of repairs on bis‐acryl resin submitted to thermal aging and immersion in beverages. J Esthet Restor Dent. 2019 Sep;31(5):514-9. doi: 10.1111/jerd.12523.

Mensitieri G, Scherillo G, Panayiotou C, Musto P. Towards a predictive thermodynamic description of sorption processes in polymers: The synergy between theoretical EoS models and vibrational spectroscopy. Mater Sci Eng R: Rep. 2020 Apr;140:100525. doi.org/10.1016/j.mser.2019.100525.

Fonseca ASQ, Moreira ADL, de Albuquerque PPA, de Menezes LR, Pfeifer CS, Schneider LFJ. Effect of monomer type on the CC degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent Mater. 2017 Apr;33(4):394-401. doi: 10.1016/j.dental.2017.01.010.

Wei Y-j, Silikas N, Zhang Z-t, Watts DC. Diffusion and concurrent solubility of self-adhering and new resin–matrix composites during water sorption/desorption cycles. Dent Mater. 2011;27(2):197-205. doi: 10.1016/j.dental.2010.10.014.

Zankuli M, Devlin H, Silikas N. Water sorption and solubility of core build-up materials. Dent Mater. 2014 Dec;30(12):e324-9. doi: 10.1016/j.dental.2014.08.374.

Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials. 2005 Nov;26(33):6449-59. doi: 10.1016/j.biomaterials.2005.04.052.

Arregui M, Giner L, Ferrari M, Valles M, Mercade M. Six-month color change and water sorption of 9 new-generation flowable composites in 6 staining solutions. Braz Oral Res. 2016 Nov;30(1):e123. doi: 10.1590/1807-3107BOR-2016.vol30.0123.

Porto ICCdM, Soares LES, Martin AA, Cavalli V, Liporoni PCS. Influence of the photoinitiator system and light photoactivation units on the degree of conversion of dental composites. Braz Oral Res. 2010;24(4):475-81. doi: 10.1590/s1806-83242010000400017.

Tarumi H, Imazato S, Ehara A, Kato S, Ebi N, Ebisu S. Post-irradiation polymerization of composites containing bis-GMA and TEGDMA. Dent Mater. 1999 Jul;15(4):238-42. doi: 10.1016/s0109-5641(99)00040-8.

Par M, Gamulin O, Marovic D, Klaric E, Tarle Z. Raman spectroscopic assessment of degree of conversion of bulk-fill resin composites–changes at 24 hours post cure. Oper Dent. 2015 May-Jun;40(3):E92-101. doi: 10.2341/14-091-L.

Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of a self-adhesive and four novel flowable composites. J Adhes Dent. 2013 Jun;15(3):229-36. doi: 10.3290/j.jad.a29530.

Stansbury JW. Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent Mater. 2012 Jan;28(1):13-22. doi: 10.1016/j.dental.2011.09.005.

Meereis CT, Leal FB, Ogliari FA. Stability of initiation systems in acidic photopolymerizable dental material. Dent Mater. 2016 Jul;32(7):889-98. doi: 10.1016/j.dental.2016.03.016.

Oguri M, Yoshida Y, Yoshihara K, Miyauchi T, Nakamura Y, Shimoda S, et al. Effects of functional monomers and photo-initiators on the degree of conversion of a dental adhesive. Acta biomater. 2012 May;8(5):1928-34. doi: 10.1016/j.actbio.2012.01.013.

Tadin A, Marovic D, Galic N, Kovacic I, Zeljezic D. Composite-induced toxicity in human gingival and pulp fibroblast cells. Acta Odontol Scand. 2014 May;72(4):304-11. doi: 10.3109/00016357.2013.824607.

Barron D, Rueggeberg F, Schuster G. A comparison of monomer conversion and inorganic filler content in visible light-cured denture resins. Dent Mater. 1992 Jul;8(4):274-7. doi: 10.1016/0109-5641(92)90099-x.

Trujillo‐Lemon M, Ge J, Lu H, Tanaka J, Stansbury JW. Dimethacrylate derivatives of dimer acid. J Polym Sci Part A: Polym Chem. 2006 May;44(12):3921-9. doi.org/10.1002/pola.21493.

Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Den Mater Dec. 2016;32(12):1586-99. doi: 10.1016/j.dental.2016.09.034.

Bociong K, Szczesio A, Sokolowski K, Domarecka M, Sokolowski J, Krasowski M, et al. The influence of water sorption of dental light-cured composites on shrinkage stress. Materials (Basel). 2017 Sep;10(10):1142. doi: 10.3390/ma10101142.

Online Browsing Platform (OBP). ISO 4049:2009(en). Dentistry — Polymer-based restorative materials . 2009 [cited 2020 Jan 20]. Available from: https://www.iso.org/obp/ui/#iso:std:iso:4049:ed-4:v1:en.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Brazilian Journal of Oral Sciences

Downloads

Download data is not yet available.