Abstract
Forensic physical anthropometry allows the determination of animal species and estimates sex, ancestry, age and height. Aim: To analyze the effectiveness of a cranioscopic/ morphological evaluation for sex estimation with a sample of the Brazilian mixed-race population by conducting a qualitative visual assessment without prior knowledge of sex. Methods: This is a blind cross-sectional study that evaluated 30 cranial characteristics of 192 skulls with mandible, 108 male and 84 female individuals, aged 22 to 97 years, from the Osteological and Tomographic Biobank. The qualitative characteristics were classified and compared to the actual sex information of the Biobank database. The statistical analysis was used to calculate de Cohen’s kappa coefficient, total percentage of agreement, sensitivity and specificity of visual sex classification. Results: Of the 30 cranial variables analyzed, 15 presented moderate degree of agreement, achieving value of Kappa test between 0.41–0.60: Glabella (Gl), Angle and lines (At), Mental eminence (Em), Mandible size (Tm), Cranial base (Bc), Mouth depth (Pb), Nasal aperture (Anl), Supraorbital region (Rs), Orbits (Orb), Mastoid processes (Pm), Alveolar arches (Aa), Zygomatic arch (Az), Orbital edge (Bo), Supraorbital protuberances (Pts), and Supramastoid crests and rugosity (Crsm). The Facial physiognomy (Ff) presented substantial reliability (0.61-0.80) with 89.8% sensitivity for male sex and 70.2% specificity. Conclusions: Cranial morphological characteristics present sexual dimorphism; however, in this study only 15 variables showed moderate degree of agreement and can be used in sex estimation. Only one variable (Ff) 81.2% total agreement with substantial reliability. Quantitative methods can be associated for safe sex estimation.
References
Krüger GC, L'Abbé EN, Stull KE, Kenyhercz MW. Sexual dimorphism in cranial morphology among modern South Africans. Int J Legal Med. 2015 Jul;129(4):869-75. doi: 10.1007/s00414-014-1111-0.
Musilová B, Dupej J, Velemínská J, Chaumoitre K, Bruzek J. Exocranial surfaces for sex assessment of the human cranium. Forensic Sci Int. 2016;269:70-7. doi: 10.1016/j.forsciint.2016.11.006.
Durić M, Rakocević Z, Donić D. The reliability of sex determination of skeletons from forensic context in the Balkans. Forensic Sci Int. 2005;147(2-3):159-64.
Spradley MK, Jantz RL. Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci. 2011;56(2):289-96. doi:10.1111/j.1556-4029.2010.01635.x.
Celbis O, Iscan MY, Soysal Z, Cagdir S. Sexual diagnosis of the glabellar region. Leg Med (Tokyo). 2001;3(3):162-70.
Ulbricht V, Schmidt CM, Groppo FC, Júnior ED, Queluz DP, Júnior LF. Sex Estimation in Brazilian Sample: Qualitative or Quantitative Methodology? Braz J Oral Sci. 2017;16:1-9. doi:10.20396/bjos.v16io.8650495.
Lewis CJ, Garvin HM. Reliability of the Walker Cranial Nonmetric Method and Implications for Sex Estimation. J Forensic Sci. 2016;61(3):743-51. doi:10.1111/1556-4029.13013.
Biancalana, RC, Ortiz AG, de Araújo LG, Semprini M, Galo R, Silva RHA. Determinação do sexo pelo crânio: etapa fundamental para a identificação humana. Rev. Bras. Crimin. 2015;4(3): 38-43.
Godde K. Secular trends in cranial morphological traits: a socioeconomic perspective of change and sexual dimorphism in North Americans 1849-1960. Ann Hum Biol. 2015;42(3):253-9. doi:10.3109/03014460.2014.941399.
Tallman SD, Go MC. Application of the Optimized Summed Scored Attributes Method to Sex Estimation in Asian Crania. J Forensic Sci. 2018;63(3):809-14. doi:10.1111/1556-4029.13644.
Walker PL. Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol. 2008;136(1):39-50. doi:10.1002/ajpa.20776.
Langley NR, Dudzik B, Cloutier A. A Decision Tree for Nonmetric Sex Assessment from the Skull. J Forensic Sci. 2018;63(1):31-7. doi:10.1111/1556-4029.13534.
Abdel Fatah EE, Shirley NR, Jantz RL, Mahfouz MR. Improving sex estimation from crania using a novel three-dimensional quantitative method. J Forensic Sci. 2014;59(3):590-600. doi:10.1111/1556-4029.12379.
Francesquini Júnior L, Francesquini MA, De La Cruz BM, Pereira SD, Ambrosano GM, Barbosa CM, et al. Identification of sex using cranial base measurements. J Forensic Odontostomatol. 2007;25(1):7-11.
Franklin D, Cardini A, Flavel A, Kuliukas A. Estimation of sex from cranial measurements in a Western Australian population. Forensic Sci Int. 2013;229(1-3):158.e1-8. doi:10.1016/j.forsciint.2013.03.005.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977 Mar;33(1):159-74.
Cicchetti DV, Feinstein AR. High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol. 1990;43(6):551-8.
Garvin HM, Ruff CB. Sexual dimorphism in skeletal browridge and chinmorphologies determined using a new quantitative method. Am J Phys Anthropol. 2012;147(4):661-70. doi: 10.1002/ajpa.22036.
Nikita E, Michopoulou E. A quantitative approach for sex estimation based on cranial morphology. Am J Phys Anthropol. 2018;165(3):507-17. doi: 10.1002/ajpa.23376.
Graw M, Czarnetzki A, Haffner HT. The form of the supraorbital margin as a criterion in identification of sex from the skull: investigations based on modern human skulls. Am J Phys Anthropol. 1999 Jan;108(1):91-6. doi: 10.1002/(SICI)1096-8644(199901)108:1<91::AID-AJPA5>3.0.CO;2-X.
Williams BA, Rogers T. Evaluating the accuracy and precision of cranial morphological traits for sex determination. J Forensic Sci. 2006;51(4):729-35.
Keen JA. A study of the differences between male and female skulls. Am J Phys Anthropol. 1950;8(1):65-79.
Loth SR, Henneberg M. Mandibular ramus flexure: a new morphologic indicator of sexual dimorphism in the human skeleton. Am J Phys Anthropol. 1996;99(3):473-85.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Brazilian Journal of Oral Sciences