Banner Portal
3D finite element model based on CT images of tooth
PDF

Keywords

Ceramic
Dental stress analysis
Finite element analysis
Imaging, three-dimensional

How to Cite

1.
Camargos GDV, Lazari-Carvalho PC, Carvalho MA de, Castro MB, Neris NW, Del Bel Cury AA. 3D finite element model based on CT images of tooth: a simplified method of modeling . Braz. J. Oral Sci. [Internet]. 2020 Aug. 14 [cited 2024 Jul. 17];19:e208910. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8658910

Abstract

Aim: This study aimed the description of a protocol to acquire a 3D finite element (FE) model of a human maxillary central incisor tooth restored with ceramic crowns with enhanced geometric detail through an easy-to-use and low-cost concept and validate it through finite element analysis (FEA). Methods: A human maxillary central incisor was digitalized using a Cone Beam Computer Tomography (CBCT) scanner. The resulted tooth CBCT DICOM files were imported into a free medical imaging software (Invesalius) for 3D surface/geometric reconstruction in stereolithographic file format (STL). The STL file was exported to a computer-aided-design (CAD) software (SolidWorks), converted into a 3D solid model and edited to simulate different materials for full crown restorations. The obtained model was exported into a FEA software to evaluate the influence of different core materials (zirconia - Zr, lithium disilicate - Ds or palladium/silver - Ps) on the mechanical behavior of the restorations under a 100 N applied to the palatal surface at 135 degrees to the long axis of the tooth, followed by a load of 25.5 N perpendicular to the incisal edge of the crown. The quantitative and qualitative analysis of maximum principal stress (ceramic veneer) and maximum principal strain (core) were obtained. Results: The Zr model presented lower stress and strain concentration in the ceramic veneer and core than Ds and Ps models. For all models, the stresses were concentrated in the external surface of the veneering ceramic and strains in the internal surface of core, both near to the loading area. Conclusion: The described procedure is a quick, inexpensive and feasible protocol to obtain a highly detailed 3D FE model, and thus could be considered for future 3D FE analysis. The results of numerical simulation confirm that stiffer core materials result in a reduced stress concentration in ceramic veneer.

https://doi.org/10.20396/bjos.v19i0.8658910
PDF

References

Rosentritt M, Behr M, van der Zel JM, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater. 2009 Mar;25(3):348-52. doi: 10.1016/j.dental.2008.08.009.

Berger G, Pereira LF de O, Souza EM de, Rached RN. A 3D finite element analysis of glass fiber reinforcement designs on the stress of an implant-supported overdenture. J Prosthet Dent. 2019 May;121(5):865.e1-865.e7. doi: 10.1016/j.prosdent.2019.02.010.

Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater. 2007 May;23(5):539-48. doi: 10.1016/j.dental.2006.03.013.

Thompson GA. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater. 2000 Jul;16(4):235-43. doi: 10.1016/s0109-5641(00)00005-1.

Reddy MS, Sundram R, Eid Abdemagyd HA. Application of finite element model in implant dentistry: a systematic review. J Pharm Bioallied Sci. 2019 May;11(Suppl 2):S85-S91. doi: 10.4103/JPBS.JPBS_296_18.

Bramanti E, Cervino G, Lauritano F, Fiorillo L, D’Amico C, Sambataro S, et al. FEM and Von Mises Analysis on prosthetic crowns structural elements: evaluation of different applied materials. ScientificWorldJournal. 2017;2017:1029574. doi:10.1155/2017/1029574.

Rodrigues M de P, Soares PBF, Valdivia ADCM, Pessoa RS, Veríssimo C, Versluis A, et al. Patient-specific Finite Element Analysis of Fiber Post and Ferrule Design. J Endod. 2017 Sep;43(9):1539-1544. doi: 10.1016/j.joen.2017.04.024.

Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001 Jun;85(6):585-98. doi: 10.1067/mpr.2001.115251.

Huang Z, Chen Z. Three-dimensional finite element modeling of a maxillary premolar tooth based on the micro-CT scanning: A detailed description. J Huazhong Univ Sci Technolog Med Sci. 2013 Oct;33(5):775-9. doi: 10.1007/s11596-013-1196-6.

Nasrin S, Katsube N, Seghi RR, Rokhlin SI. Survival Predictions of ceramic crowns using statistical fracture mechanics. J Dent Res. 2017 May;96(5):509-15. doi: 10.1177/0022034516688444.

Darendeliler S, Darendeliler H, Kinoğlu T. Analysis of a central maxillary incisor by using a three-dimensional finite element method. J Oral Rehabil. 1992 Jul;19(4):371-83. doi: 10.1111/j.1365-2842.1992.tb01579.x.

Lin CL, Chang CH, Wang CH, Ko CC, Lee HE. Numerical investigation of the factors affecting interfacial stresses in an MOD restored tooth by auto-meshed finite element method. J Oral Rehabil. 2001 Jun;28(6):517-25. doi: 10.1046/j.1365-2842.2001.00689.x.

Sotto-Maior BS, Senna PM, da Silva WJ, Rocha EP, Del Bel Cury AA. Influence of crown-to-implant ratio, retention system, restorative material, and occlusal loading on stress concentrations in single short implants. Int J Oral Maxillofac Implants. 2012 May-Jun;27(3):e13-8.

Lazari PCPC, Oliveira RCN De, Anchieta RBRB, Almeida EO De, Freitas Junior ACAC, Kina S, et al. Stress distribution on dentin-cement-post interface varying root canal and glass fiber post diameters. A three-dimensional finite element analysis based on micro-CT data. J Appl Oral Sci. 2013;21(6):511-7. doi: 10.1590/1679-775720130203.

Vilela ABF, Soares PBF, de Oliveira FS, Garcia-Silva TC, Estrela C, Versluis A, et al. Dental trauma on primary teeth at different root resorption stages—A dynamic finite element impact analysis of the effect on the permanent tooth germ. Dent Traumatol. 2019 Apr;35(2):101-8. doi: 10.1111/edt.12460.

Firmiano TC, Oliveira MTF, de Souza JB, Soares CJ, Versluis A, Veríssimo C. Influence of impacted canines on the stress distribution during dental trauma with and without a mouthguard. Dent Traumatol. 2019 Oct;35(4-5):276-84. doi: 10.1111/edt.12477.

Della Bona Á, Borba M, Benetti P, Duan Y, Griggs JA. Three-dimensional finite element modelling of all-ceramic restorations based on micro-CT. J Dent. 2013 May;41(5):412-9. doi: 10.1016/j.jdent.2013.02.014.

Magne P, Tan DT. Incisor compliance following operative procedures: a rapid 3-D finite element analysis using micro-CT data. J Adhes Dent. 2008 Feb;10(1):49-56.

Lazari PCPC, Sotto-Maior BSBS, Rocha EPEP, de Villa Camargos G, Del Bel Cury AA. Influence of the veneer-framework interface on the mechanical behavior of ceramic veneers: a nonlinear finite element analysis. J Prosthet Dent. 2014 Oct;112(4):857-63. doi: 10.1016/j.prosdent.2014.01.022.

Carvalho MA, Sotto-Maior BS, Del Bel Cury AA, Pessanha Henriques GE. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis. J Prosthet Dent. 2014 Nov;112(5):1096-102. doi: 10.1016/j.prosdent.2014.03.015.

Camargos GVG de V, Sotto-Maior BSBS, Silva WJWJ da, Lazari PCPC, Del Bel Cury AA. Prosthetic abutment influences bone biomechanical behavior of immediately loaded implants. Braz Oral Res. 016 May;30(1):S1806-83242016000100901. doi: 10.1590/1807-3107BOR-2016.vol30.0065.

Veríssimo C, Simamoto Júnior PC, Soares CJ, Noritomi PY, Santos-Filho PCF. Effect of the crown, post, and remaining coronal dentin on the biomechanical behavior of endodontically treated maxillary central incisors. J Prosthet Dent. 2014 Mar;111(3):234-46. doi: 10.1016/j.prosdent.2013.07.006.

Marshall GW, Balooch M, Gallagher RR, Gansky SA, Marshall SJ. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J Biomed Mater Res. 2001 Jan;54(1):87-95. doi: 10.1002/1097-4636(200101)54:1<87::aid-jbm10>3.0.co;2-z.

Dejak B, Mlotkowski A. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars. J Prosthet Dent. 2008 Feb;99(2):131-40. doi: 10.1016/S0022-3913(08)60029-3.

Asmussen E, Peutzfeldt A, Sahafi A. Finite element analysis of stresses in endodontically treated, dowel-restored teeth. J Prosthet Dent. 2005 Oct;94(4):321-9. doi: 10.1016/j.prosdent.2005.07.003.

Craig R, Powers J. Restorative dental materials. 8th ed. Saint Louis: Mosby; 1989.

Coelho PG, Bonfante EA, Silva NRF, Rekow ED, Thompson VP. Laboratory simulation of Y-TZP all-ceramic crown clinical failures. J Dent Res. 2009 Apr;88(4):382-6. doi: 10.1177/0022034509333968.

Cruz M, Wassall T, Toledo EM, da Silva Barra LP, Cruz S. Finite element stress analysis of dental prostheses supported by straight and angled implants. Int J Oral Maxillofac Implants. 2009;24(3):391-403.

Li LL, Wang ZY, Bai ZC, Mao Y, Gao B, Xin HT, et al. Three-dimensional finite element analysis of weakened roots restored with different cements in combination with titanium alloy posts. Chin Med J (Engl). 2006 Feb;119(4):305-11.

Magne P. Virtual prototyping of adhesively restored, endodontically treated molars. J Prosthet Dent. 2010 Jun;103(6):343-51. doi: 10.1016/S0022-3913(10)60074-1.

Gao J, Xu W, Ding Z. 3D finite element mesh generation of complicated tooth model based on CT slices. Comput Methods Programs Biomed. 2006 May;82(2):97-105. doi: 10.1016/j.cmpb.2006.02.008.

Poiate IAVP, Vasconcellos AB, Mori M, Poiate E. 2D and 3D finite element analysis of central incisor generated by computerized tomography. Comput Methods Programs Biomed. 2011 Nov;104(2):292-9. doi: 10.1016/j.cmpb.2011.03.017.

Maret D, Molinier F, Braga J, Peters OA, Telmon N, Treil J, et al. Accuracy of 3D reconstructions based on cone beam computed tomography. J Dent Res. 2010 Dec;89(12):1465-9. doi: 10.1177/0022034510378011.

De Jager N, De Kler M, Van Der Zel JM. The influence of different core material on the FEA-determined stress distribution in dental crowns. Dent Mater. 2006 Mar;22(3):234-42. doi: 10.1016/j.dental.2005.04.034

Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011 Jan;27(1):83-96. doi: 10.1016/j.dental.2010.10.024.

Kim B, Zhang Y, Pines M, Thompson VP. Fracture of porcelain-veneered structures in fatigue. J Dent Res. 2007 Feb;86(2):142-6. doi: 10.1177/154405910708600207.

Liu Y, Liu G, Wang Y. Failure modes and fracture origins of porcelain veneers on bilayer dental crowns. Int J Prosthodont. 2014 Mar-Apr;27(2):147-50. doi: 10.11607/ijp.3608.

Taskonak B, Yan J, Mecholsky JJ, Sertgöz A, Koçak A. Fractographic analyses of zirconia-based fixed partial dentures. Dent Mater. 2008 Aug;24(8):1077-82. doi: 10.1016/j.dental.2007.12.006.

Silva NRFA, Bonfante E, Rafferty BT, Zavanelli RA, Martins LL, Rekow ED, et al. Conventional and modified veneered zirconia vs. metalloceramic: fatigue and finite element analysis. J Prosthodont. 2012 Aug;21(6):433-9. doi: 10.1111/j.1532-849X.2012.00861.x.

The Brazilian Journal of Oral Sciences uses the Creative Commons license (CC), thus preserving the integrity of the articles in an open access environment.

Downloads

Download data is not yet available.