Banner Portal
Surface and mechanical properties of adhesives with calcium phosphates challenged to different storage media


Dentin bonding agents
Calcium phosphates
Tensile strength

How to Cite

Mederos Gómez MM, Garcia IM, Leitune VCB, Collares FM. Surface and mechanical properties of adhesives with calcium phosphates challenged to different storage media. Braz. J. Oral Sci. [Internet]. 2020 Nov. 3 [cited 2024 Feb. 21];19:e200181. Available from:


Aim: To evaluate the behavior of experimental dental adhesiveswith hydroxyapatite (HAp), alpha-tricalcium phosphate (α-TCP)or octacalcium phosphate (OCP) after storing them in threedifferent media: dry storage, distilled water, or lactic acid.Methods: An experimental adhesive resin was formulated withbisphenol A glycol dimethacrylate, 2-hydroxyethyl methacrylate,and photoiniciator/co-initiator system. HAp (GHAp), α-TCP(Gα-TCP), or OCP (GOCP) were added to the adhesive resin at 2wt.%, and one group remained without calcium phosphates tobe used as a control (GCtrl). The adhesives were evaluated forsurface roughness, scanning electron microscopy (SEM), andultimate tensile strength (UTS) after storing in distilled water(pH=5.8), lactic acid (pH=4) or dry medium. Results: The initialsurface roughness was not different among groups (p>0.05).GHAp showed increased values after immersion in water(p<0.05) or lactic acid (p<0.05). SEM analysis showed a surfacevariation of the filled adhesives, mainly for Gα-TCP and GHAp. GHApshowed the highest UTS in dry medium (p<0.05), and its valuedecreased after lactic acid storage (p<0.05). Conclusions:The findings of this study showed that HAp, OCP, and α-TCPaffected the physical behavior of the experimental adhesiveresins in different ways. HAp was the calcium phosphatethat most adversely affected the surface roughness and themechanical property of the material, mainly when exposed toan acid medium.


Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJM. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012 Jan;28(1):87-101. doi: 10.1016/

Glauser S, Astasov-Frauenhoffer M, Müller JA, Fischer J, Waltimo T, Rohr N. Bacterial colonization of resin composite cements: influence of material composition and surface roughness. Eur J Oral Sci. 2017 Aug;125(4):294-302. doi: 10.1111/eos.12355.

Ranjkesh B, Ding M, Dalstra M, Nyengaard JR, Chevallier J, Isidor F, et al. Calcium phosphate precipitation in experimental gaps between fluoride-containing fast-setting calcium silicate cement and dentin. Eur J Oral Sci. 2018 Apr;126(2):118-25. doi: 10.1111/eos.12399.

Jefferies SR, Fuller AE, Boston DW. Preliminary Evidence That Bioactive Cements Occlude Artificial Marginal Gaps. J Esthet Restor Dent. 2015 May;27(3):155-66. doi: 10.1111/jerd.12133.

Jang JH, Lee MG, Ferracane JL, Davis H, Bae HE, Choi D, et al. Effect of bioactive glass-containing resin composite on dentin remineralization. J Dent. 2018 Aug 1;75:58-64. doi: 10.1016/j.jdent.2018.05.017.

Alania Y, Natale LC, Nesadal D, Vilela H, Magalhães AC, Braga RR. In vitro remineralization of artificial enamel caries with resin composites containing calcium phosphate particles. J Biomed Mater Res B Appl Biomater. 2019 Jul;107(5):1542-50. doi: 10.1002/jbm.b.34246.

Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater. 2019 Jan;35(1):3-14. doi: 10.1016/

Liang K, Gao Y, Xiao S, Tay FR, Weir MD, Zhou X, et al. Poly(amido amine) and rechargeable adhesive containing calcium phosphate nanoparticles for long-term dentin remineralization. J Dent. 2019 Jun;85:47-56. doi: 10.1016/j.jdent.2019.04.011.

Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010 Mar;31(7):1465-85. doi: 10.1016/j.biomaterials.2009.11.050.

Uskoković V, Uskoković DP. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res Part B Appl Biomater. 2011 Jan;96B(1):152-91. doi: 10.1002/jbm.b.31746.

Garcia IM, Leitune VCB, Samuel SMW, Collares FM. Influence of different calcium phosphates on an experimental adhesive resin. J Adhes Dent. 2017;19(5):379-84. doi: 10.3290/j.jad.a38997.

Kavrik F, Kucukyilmaz E. The effect of different ratios of nano-sized hydroxyapatite fillers on the micro-tensile bond strength of an adhesive resin. Microsc Res Tech. 2019 May;82(5):538-43. doi: 10.1002/jemt.23197.

Par M, Tarle Z, Hickel R, Ilie N. Mechanical properties of experimental composites containing bioactive glass after artificial aging in water and ethanol. Clin Oral Investig. 2019 Jun;23(6):2733-41. doi: 10.1007/s00784-018-2713-6.

Costa AR, Correr-Sobrinho L, Ambrosano GMB, Sinhoreti MAC, Borges GA, Platt JA, et al. Dentin bond strength of a fluoride-releasing adhesive system submitted to pH-cycling. Braz Dent J. 2014;25(6):472-8. doi: 10.1590/0103-6440201302445.

Schwendicke F, Al-Abdi A, Pascual Moscardó A, Ferrando Cascales A, Sauro S. Remineralization effects of conventional and experimental ion-releasing materials in chemically or bacterially-induced dentin caries lesions. Dent Mater. 2019 May;35(5):772-9. doi: 10.1016/

Roque ACC, Bohner LOL, de Godoi APT, Colucci V, Corona SAM, Catirse ABCEB. Surface roughness of composite resins subjected to hydrochloric acid. Braz Dent J. 2015 Jul;26(3):268-71. doi: 10.1590/0103-6440201300271.

Yoshihara K, Nagaoka N, Maruo Y, Sano H, Yoshida Y, Van Meerbeek B. Bacterial adhesion not inhibited by ion-releasing bioactive glass filler. Dent Mater. 2017 Jun;33(6):723-34. doi: 10.1016/

Caldeira EM, Telles V, Mattos CT, Nojima MDCG. Surface morphologic evaluation of orthodontic bonding systems under conditions of cariogenic challenge. Braz Oral Res. 2019 Apr 25;33:e029. doi: 10.1590/1807-3107bor-2019.vol33.0029.

Cortopassi LS, Shimokawa CAK, Willers AE, Sobral MAP. Surface roughness and color stability of surface sealants and adhesive systems applied over a resin-based composite. J Esthet Restor Dent. 2020 Jan;32(1):64-72. doi: 10.1111/jerd.12548.

Reis A, Martins GC, de Paula EA, Sanchez AD, Loguercio AD. Alternative aging solutions to accelerate resin-dentin bond degradation. J Adhes Dent. 2015;17(4):321-8. doi: 10.3290/j.jad.a34591.

Montagner AF, Kuper NK, Opdam NJM, Bronkhorst EM, Cenci MS, Huysmans MCDNJM. Wall-lesion development in gaps: The role of the adhesive bonding material. J Dent. 2015 Aug;43(8):1007-12. doi: 10.1016/j.jdent.2015.04.007.

Thurmer MB, Vieira RS, Fernandes JM, Coelho WTG dos S LA. Synthesis of Alpha-Tricalcium Phosphate by Wet Reaction and Evaluation of Mechanical Properties. Mater Sci Forum. 2012;727-728:1164-9. doi: 10.4028/

Suzuki O, Miyasaka Y, Sakurai M, Nakamura M, Kagayama M. Bone Formation on Synthetic Precursors of Hydroxyapatite. Tohoku J Exp Med. 1991 May;164(1):37-50. doi: 10.1620/tjem.164.37.

Trommer RM, Santos LA, Bergmann CP. Nanostructured hydroxyapatite powders produced by a flame-based technique. Mater Sci Eng C. 2009 Aug;29(6):1770-5. doi: 10.4028/

Briso ALF, Caruzo LP, Guedes APA, Catelan A, Dos Santos PH. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. Oper Dent. 2011 Jul;36(4):397-402. doi: 10.2341/10-356-L.

Lenzi TL, Calvo AFB, Tedesco TK, Ricci HA, Hebling J, Raggio DP. Effect of method of caries induction on aged resin-dentin bond of primary teeth. BMC Oral Health. 2015 Jul;15(1). doi: 10.1186/s12903-015-0049-z.

Collares FM, Ogliari FA, Zanchi CH, Petzhold CL, Piva E, Samuel SMW. Influence of 2-hydroxyethyl methacrylate concentration on polymer network of adhesive resin. J Adhes Dent. 2011;13(2):125-9. doi: 10.3290/j.jad.a18781.

Øilo M, Bakken V. Biofilm and dental biomaterials. Materials (Basel). 2015 Jun;8(6):2887-900. doi: 10.3390/ma8062887.

Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation: An in vivo study in man. J Clin Periodontol. 1990;17(3):138-44. doi: 10.1111/j.1600-051X.1990.tb01077.x.

Yang S-Y, Kwon J-S, Kim K-N, Kim K-M. Enamel Surface with Pit and Fissure Sealant Containing 45S5 Bioactive Glass. J Dent Res. 2016 May;95(5):550-7. doi: 10.1177/0022034515626116.

Tjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol ILS, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer-A review. Dent Mater. 2013 Oct;29(10):999-1011. doi: 10.1016/

Shah MB, Ferracane JL, Kruzic JJ. Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites. Dent Mater. 2009 Jul;25(7):909-16. doi: 10.1016/

Palaniappan S, Bharadwaj D, Mattar DL, Peumans M, Van Meerbeek B, Lambrechts P. Nanofilled and microhybrid composite restorations: Five-year clinical wear performances. Dent Mater. 2011 Jul;27(7):692-700. doi: 10.1016/

Hemingway CA, Shellis RP, Parker DM, Addy M, Barbour ME. Inhibition of hydroxyapatite dissolution by ovalbumin as a function of pH, calcium concentration, protein concentration and acid type. Caries Res. 2008 Sep;42(5):348-53. doi: 10.1159/000151440.

Dong Z, Li Y, Zou Q. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl Surf Sci. 2009 Apr 1;255(12):6087-91. doi: 10.1016/j.apsusc.2009.01.083.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Brazilian Journal of Oral Sciences


Download data is not yet available.


Metrics Loading ...