Analysis of the marginal adaptation of different crowns fabricated with computer-aided technology using an intraoral digital scanner

Authors

  • Roniel Kapler Federal University of Bahia
  • Michelle Villa Oliveira Bahiana School of Medicine and Public Health
  • Ingrid de Oliveira Bandeira Bahiana School of Medicine and Public Health
  • Thayara Coelho Metzker Bahiana School of Medicine and Public Health
  • Adriana Oliveira Carvalho Feira de Santana State University
  • Emilena Maria Castor Xisto Lima Federal University of Bahia https://orcid.org/0000-0001-8233-7392

DOI:

https://doi.org/10.20396/bjos.v19i0.8660537

Keywords:

Computer-aided design, Crowns, Dental marginal adaptation, Ceramics, Composite resins

Abstract

Aim: The aim of this study was to evaluate the marginal adaptation of ceramic and composite resin crowns fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) technology using an intraoral digital scanner. Methods: A human mandibular right second molar was prepared for a ceramic crown. The impressions were made using intraoral scanning device and crowns were milled. Tem crowns were fabricated for each group (n=10): GF – Feldspathic Ceramic (Cerec Blocs, Sirona), GL - Lithium Disilicate Ceramic (IPS e.max CAD, Ivoclar), GG - composite resin (Grandio Blocs, VOCO) and GB - composite resin (Brava Block, FGM). The marginal gap was measured for each specimen at 4 points under magnification with a stereomicroscope. All data were statistically analyzed using one-way ANOVA followed by the Tukey’s test (α=.05). Results: The lowest marginal discrepancy value was observed in GB (60.95 ± 13.64 μm), which was statistically different from the GL (84.22 ± 20.86 μm). However, there was no statistically significant difference between these groups when compared with the other groups, GF (73.26 ±8.19 μm) and GG (68.42 ± 11.31 μm). Conclusion: It can be concluded that the composite resin presented the lowest variance compared to the lithium disilicate glass ceramic, although the marginal gap of all materials tested was within the acceptable clinical limit (120 μm).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Roniel Kapler, Federal University of Bahia

Faculty of Dentistry, Federal University of Bahia (UFBA), Salvador, BA, Brazil.

Michelle Villa Oliveira, Bahiana School of Medicine and Public Health

Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA, Brazil.

Ingrid de Oliveira Bandeira, Bahiana School of Medicine and Public Health

Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA, Brazil.

Thayara Coelho Metzker, Bahiana School of Medicine and Public Health

Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA, Brazil.

Adriana Oliveira Carvalho, Feira de Santana State University

Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA, Brazil. Faculty of Dentistry, Feira de Santana State University (UEFS), Feira de Santana, BA, Brazil.

Emilena Maria Castor Xisto Lima, Federal University of Bahia

Faculty of Dentistry, Federal University of Bahia (UFBA), Salvador, BA, Brazil. Bahiana School of Medicine and Public Health (EBMSP), Salvador, BA, Brazil.

References

Tabata LF, de Lima Silva TA, de Paula Silveira AC, Ribeiro APD. Marginal and internal fit of CAD-CAM composite resin and ceramic crowns before and after internal adjustment. J Prosthet Dent. 2020 Mar;123(3):500-5. doi: 10.1016/j.prosdent.2019.01.010.

de Paula Silveira AC, Chaves S.B, Hilgert LA, Ribeiro APD. Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras. J Prosthet Dent. 2017 Mar;117(3):386-92. doi: 10.1016/j.prosdent.2016.07.017.

Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009 Jan;28(1):44-56. doi: 10.4012/dmj.28.44.

González de Villaumbrosia P, Martínez-Rus F, García-Orejas A, Salido MP, Pradíes G. In vitro comparison of the accuracy (trueness and precision) of six extraoral dental scanners with different scanning technologies. J Prosthet Dent. 2016 Oct;116(4):543-50.e1. doi: 10.1016/j.prosdent.2016.01.025.

Davidowitz G, Kotick PG. The use of CAD/CAM in dentistry. J Dent Clin North Am. 2011 Jul;55(3):559-70, ix. doi: 10.1016/j.cden.2011.02.011.

Fasbinder D. Using digital technology to enhance restorative dentistry. Compend Contin Educ Dent. 2012 Oct;33(9):666-8, 670, 672.

Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont. 2017;26:581–582017 Oct;26(7):581-86. doi: 10.1111/jopr.12446.

Bohner LOL, De Luca Canto G, Marció BS, Laganá DC, Sesma N, Tortamano Neto P. Computer-aided analysis of digital dental impressions obtained from intraoral and extraoral scanners. J Prosthet Dent. 2017 Nov;118(5):617-23. doi: 10.1016/j.prosdent.2016.11.018.

Abdel-Azim T, Rogers K, Elathamna E, Zandinejad A, Metz M, Morton D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent. 2015 Oct;114(4):554-9. doi: 10.1016/j.prosdent.2015.04.001.

Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent. 1991 Mar;65(3):357-64. doi: 10.1016/0022-3913(91)90225-l.

Demir N, Ozturk AN, Malkoc MA. Evaluation of the marginal fit of full ceramic crowns by the microcomputed tomography (micro-CT) technique. Eur J Dent. 2014 Oct;8(4):437-44. doi: 10.4103/1305-7456.143612.

Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989 Oct;62(4):405-8. doi: 10.1016/0022-3913(89)90170-4.

Hunter AJ, Hunter AR. Gingival margins for crowns: a review and discussion. Part II: Discrepancies and configurations. J Prosthet Dent. 1990 Dec;64(6):636-42. doi: 10.1016/0022-3913(90)90286-l.

Sailer I, Fehér A, Filser F, Gauckler LJ, LüthycH, Hämmerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial denture. Int J Prosthodont. 2007 Jul-Aug;20(4):383-8.

Jei JB, Mohan J. Comparative evaluation of marginal accuracy of a cast fixed partial denture compared to soldered fixed partial denture made of two different base metal alloys and casting techniques: an in vitro study. J Indian Prosthodont Soc. 2014 Mar;14(1):104-9. doi: 10.1007/s13191-013-0286-2.

McLean JW, Von Fraunhofer JÁ. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971 Aug;131(3):107-11. doi: 10.1038/sj.bdj.4802708.

Akbar JH, Petrie CS, Walker MP, Williams K, Eick JD. Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J Prosthodont. 2006 May-Jun;15(3):155-63. doi: 10.1111/j.1532-849X.2006.00095.x.

Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent. 2009 Apr;101(4):239-47. doi: 10.1016/S0022-3913(09)60047-0.

Euán R, Figueras-Álvarez O, Cabratosa-Termes J, Brufau-de Barberà M, Gomes-Azevedo S. Comparison of the marginal adaptation of zirconium dioxide crowns in preparations with two different finish lines. J Prosthodont. 2012 Jun;21(4):291-5. doi: 10.1111/j.1532-849X.2011.00831.x.

Euán R, Figueras-Álvarez O, Cabratosa-Termes J, Oliver-Parra R. Marginal adaptation of zirconium dioxide copings: influence of the CAD/CAM system and the finish line design. J Prosthet Dent. 2014 Aug;112(2):155-62. doi: 10.1016/j.prosdent.2013.10.012.

Shamseddine L, Mortada R, Rifai K, Chidiac JJ. Marginal and internal fit of pressed ceramic crowns made from conventional and computer-aided design/computer-aided manufacturing wax patterns: an in vitro comparison. J Prosthet Dent. 2016 Aug;116(2):242-8. doi: 10.1016/j.prosdent.2015.12.005.

Boeddinghaus M, Breloer E.S, Rehmann P, Wöstmann B. Accuracy of single- tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig. 2015 Nov;19(8):2027-34. doi: 10.1007/s00784-015-1430-7.

Renne W, Wolf B, Kessler R, McPherson K, Mennito AS. Evaluation of the marginal fit of CAD/CAM crowns fabricated using two different chairside CAD/CAM systems on preparations of varying quality. J Esthet Restor Dent. 2015;27(4):194-202. doi: 10.1111/jerd.12148.

Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015 Oct;114(4):587-93. doi: 10.1016/j.prosdent.2015.04.016.

Kois DE, Isvilanonda V, Chaiyabutr Y, Kois JC. Evaluation of fracture resistance and failure risks of posterior partial coverage restorations. J Esthet Restor Dent. 2013 Apr;25(2):110-22. doi: 10.1111/jerd.12018.

Zahran M, El-Mowafy O, Tam L, Watson PA, Finer Y. Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont. 2008 Jul;17(5):370-7. doi: 10.1111/j.1532-849X.2008.00305.x.

Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. J Prosthet Dent. 2014 Nov;112(5):1141-50. doi: 10.1016/j.prosdent.2014.05.006.

Ferracane JL. Resin composite-state of the art. Dent Mater. 2011 Jan;27(1):29-38. doi: 10.1016/j.dental.2010.10.020.

Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014 Dec;93(12):1232-4. doi: 10.1177/0022034514553976.

El Ghoul WA, Özcan M, Ounsi H, Tohme H, Salameh Z. Effect of different CAD-CAM materials on the marginal and internal adaptation of endocrown restorations: An in vitro study. J Prosthet Dent. 2020 Jan;123(1):128-34. doi: 10.1016/j.prosdent.2018.10.024.

Cerqueira CL, Kappler R, Cavalcanti AAN, Lima EMCX. Marginal adaptation of provisional crowns made of acrylic and bisacrylic resins using different impression materials. Braz J Oral Sci. 2019;18:e191603. doi: 10.20396/bjos.v18i0.8657257.

Nejatidanesh F, Lofti HR, Savabi O. Marginal accuracy of interim restorations fabricated from four interim autopolymerizing resins. J Prosthet Dent. 2006 May;95(5):364-7. doi: 10.1016/j.prosdent.2006.02.030.

VOCO GmbH. Grandio Blocks. Cuxhaven, Germany; 2018 Jan [cited 2019 Oct 11]. Available from: https://www.voco.dental/br/portaldata/1/resources/products/instructions-for-use/e1/grandio-blocs_ifu_e1.pdf.

FGM Dental Group. Brava Bloc Amann.Joinvile, SC: FGM; c2020 [cited 2019 Oct 11]. Available from: https://www.fgm.ind.br/site/wp-content/uploads/2018/02/perfil_brava- block.pdf.

3M. Lava Ultimate. In: Catálogo Técnico de Produtos 3M Oral Care [cited 2019 Oct 11]. p.28. Available from: http://dentalprimecwb.com.br/wp-content/uploads/2017/09/Atualizado-Cat%C3%A1logo-T%C3%A9cnico-de-Produtos-3M.pdf.

das Neves FD, Carneiro TAPN, do Prado CJ, Prudente MS, Zancopé K, Davi LR, et al. Micrometric precision of prosthetic dental crowns obtained by optical scanning and computer-aided designing/computer-aided manufacturing system. J Biomed Opt. 2014 Aug;19(8):088003. doi: 10.1117/1.JBO.19.8.088003.

Downloads

Published

2020-11-30

How to Cite

1.
Kapler R, Oliveira MV, Bandeira I de O, Metzker TC, Carvalho AO, Lima EMCX. Analysis of the marginal adaptation of different crowns fabricated with computer-aided technology using an intraoral digital scanner. Braz. J. Oral Sci. [Internet]. 2020 Nov. 30 [cited 2022 Oct. 4];19:e200537. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8660537