Banner Portal
Marginal misfit of heat-pressed milled wax-pattern and CAD/CAM crowns and its effect on stress distribution in implant-supported rehabilitations
PDF

Keywords

Dental materials
Dental marginal adaptation
Dental prosthesis, implant-supported
Microscopy, electron, scanning
Finite element analysis

How to Cite

1.
Ribeiro MC de O, Marcello-Machado RM, Bordin D, Bergamo ETP, Gomes RS. Marginal misfit of heat-pressed milled wax-pattern and CAD/CAM crowns and its effect on stress distribution in implant-supported rehabilitations. Braz. J. Oral Sci. [Internet]. 2021 Jun. 17 [cited 2024 Jun. 30];20(00):e214873. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8664873

Abstract

Aim: To compare the marginal fit of lithium disilicate CAD/CAM crowns and heat-pressed crowns fabricated using milled wax patterns, and evaluate its effect on stress distribution in implantsupported rehabilitation. Methods: A CAD model of a mandibular first molar was designed, and 16 lithium disilicate crowns (8/group) were obtained. The crown-prosthetic abutment set was evaluated in a scanning electron microscopy. The mean misfit for each group was recorded and evaluated using Student’s t-test. For in silico analysis, a virtual cement thickness was designed for the two misfit values found previously, and the CAD model was assembled on an implant-abutment set. A load of 100 N was applied at 30° on the central fossa, and the equivalent stress was calculated for the crown, titanium components, bone, and resin cement layer. Results: The CAD/CAM group presented a significantly (p=0.0068) higher misfit (64.99±18.73 μm) than the heat-pressed group (37.64±15.66 μm). In silico results showed that the heat-pressed group presented a decrease in stress concentration of 61% in the crown and 21% in the cement. In addition, a decrease of 14.5% and an increase of 7.8% in the stress for the prosthetic abutment and implant, respectively, was recorded. For the cortical and cancellous bone, a slight increase in stress occurred with an increase in the cement layer thickness of 5.9% and 5.7%, respectively. Conclusion: The milling of wax patterns for subsequent inclusion and obtaining heat-pressed crowns is an option to obtain restorations with an excellent marginal fit and better stress distribution throughout the implant-abutment set.

 

https://doi.org/10.20396/bjos.v20i00.8664873
PDF

References

Rojpaibool T, Leevailoj C. Fracture resistance of lithium disilicate ceramics bonded to enamel or dentin using different resin cement types and film thicknesses. J Prosthodont. 2017 Feb;26(2):141-9. doi: 10.1111/jopr.12372.

Tuntiprawon M, Wilson PR. The effect of cement thickness on the fracture strength of all-ceramic crowns. Aust Dent J. 1995 Feb;40(1):17-21. doi: 10.1111/j.1834-7819.1995.tb05607.x.

Dolev E, Bitterman Y, Meirowitz A. Comparison of marginal fit between CAD-CAM and hot-press lithium disilicate crowns. J Prosthet Dent. 2019 Jan;121(1):124-8. doi: 10.1016/j.prosdent.2018.03.035.

Vargas SP, Neves ACC, Vitti R, Amaral M, Henrique MN, Silva-Concílio LR. Influence of Different Ceramic Systems on Marginal Misfit. Eur J Prosthodont Restor Dent. 2017 Sep;25(3):127-30. doi: 10.1922/EJPRD_01702Vargas04.

McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971 Aug;131(3):107-11. doi: 10.1038/sj.bdj.4802708.

Daou EE, Baba NZ. Evaluation of Marginal and Internal Fit of Presintered Co-Cr and Zirconia Three-Unit Fixed Dental Prosthesis Compared to Cast Co-Cr. J Prosthodont. 2020 Dec;29(9):792-9. doi: 10.1111/jopr.13183.

Azar B, Eckert S, Kunkela J, Ingr T, Mounajjed R. The marginal fit of lithium disilicate crowns: Press vs. CAD/CAM. Braz Oral Res. 2018;32:e001. doi: 10.1590/1807-3107/2018.vol32.0001.

Joda T, Zarone F, Ferrari M. The complete digital workflow in fixed prosthodontics : a systematic review. BMC Oral Health. 2017 Sep;17(1):124. doi: 10.1186/s12903-017-0415-0.

Joda T, Brägger U. Time-efficiency analysis of the treatment with monolithic implant crowns in a digital workflow: a randomized controlled trial. Clin Oral Implants Res. 2016 Nov;27(11):1401-6. doi: 10.1111/clr.12753.

Homsy F, Bottin M, Özcan M, Majzoub Z. Fit accuracy of pressed and milled lithium disilicate inlays fabricated from conventional impressions or a laboratory-based digital workflow. Eur J Prosthodont Restor Dent. 2019 Feb;27(1):18-25. doi: 10.1922/EJPRD_01828Homsy08.

Schestatsky R, Zucuni CP, Dapieve KS, Burgo TAL, Spazzin AO, Bacchi A, et al. Microstructure, topography, surface roughness, fractal dimension, internal and marginal adaptation of pressed and milled lithium-disilicate monolithic restorations. J Prosthodont Res. 2020 Jan;64(1):12-9. doi: 10.1016/j.jpor.2019.05.004.

Shamseddine L, Mortada R, Rifai K, Chidiac JJ. Marginal and internal fit of pressed ceramic crowns made from conventional and computer-aided design and computer-aided manufacturing wax patterns: An in vitro comparison. J Prosthet Dent. 2016 Aug;116(2):242-8. doi: 10.1016/j.prosdent.2015.12.005.

Sadid-Zadeh R, Li R, Miller LM, Simon M. Effect of fabrication technique on the marginal discrepancy and resistance of lithium disilicate crowns: an in vitro study. J Prosthodont. 2019 Dec;28(9):1005-10. doi: 10.1111/jopr.13014.

Reich S, Gozdowski S, Trentzsch L, Frankenberger R, Lohbauer U. Marginal fit of heat-pressed vs. CAD/CAM processed all-ceramic onlays using a milling unit prototype. Oper Dent. 2008;33(6):644-50. doi: 10.2341/07-162.

Zeltner M, Sailer I, Mühlemann S, Özcan M, Hämmerle CHF, Benic GI. Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part III: marginal and internal fit. J Prosthet Dent. 2017 Mar;117(3):354-62. doi: 10.1016/j.prosdent.2016.04.028.

Santos MJMC, Costa MD, Rubo JH, Pegoraro LF, Santos GC. Current all-ceramic systems in dentistry: a review. Compend Contin Educ Dent. 2015 Jan;36(1):31-7; quiz 38, 40.

Steinmassl O, Dumfahrt H, Grunert I, Steinmassl P-A. CAD/CAM produces dentures with improved fit. Clin Oral Investig. 2018 Nov;22(8):2829-35. doi: 10.1007/s00784-018-2369-2.

Gomes RS, Souza CMC de, Bergamo ETP, Bordin D, Del Bel Cury AA. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate. J Appl Oral Sci. 2017;25(3):282-9. doi: 10.1590/1678-7757-2016-0233.

Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent. 2007 Dec;35(12):897-902. doi: 10.1016/j.jdent.2007.07.002.

Sailer I, Benic GI, Fehmer V, Hämmerle CHF, Mühlemann S. Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part II: CAD-CAM versus conventional laboratory procedures. J Prosthet Dent. 2017 Jul;118(1):43-8. doi: 10.1016/j.prosdent.2016.09.031..

Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NRFA. All-ceramic systems: laboratory and clinical performance. Dent Clin North Am. 2011 Apr;55(2):333-52, ix. doi: 10.1016/j.cden.2011.01.005.

Kim J-H, Jeong J-H, Lee J-H, Cho H-W. Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT. J Prosthet Dent. 2016 Oct;116(4):551-7. doi: 10.1016/j.prosdent.2016.03.028.

Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014 Nov;41(11):853-74. doi: 10.1111/joor.12205.

Castillo-Oyagüe R, Lynch CD, Turrión AS, López-Lozano JF, Torres-Lagares D, Suárez-García M-J. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents. J Dent. 2013 Jan;41(1):90-6. doi: 10.1016/j.jdent.2012.09.014.

Barbosa Jr SA, Bacchi A, Barão VAR, Silva-Sousa YTC, Bruniera JF, Caldas RA, et al. Implant volume loss, misfit, screw loosening, and stress in custom titanium and zirconia abutments. Braz Dent J. 2020 Sep;31(4):374-9. doi: 10.1590/0103-6440202003643.

Schmitter M, Schweiger M, Mueller D, Rues S. Effect on in vitro fracture resistance of the technique used to attach lithium disilicate ceramic veneer to zirconia frameworks. Dent Mater. 2014 Feb;30(2):122-30. doi: 10.1016/j.dental.2013.10.008.

Lü L-W, Meng G-W, Liu Z-H. Finite element analysis of multi-piece post-crown restoration using different types of adhesives. Int J Oral Sci. 2013 Sep;5(3):162-6. doi: 10.1038/ijos.2013.50.

Cruz M, Wassall T, Toledo EM, da Silva Barra LP, Cruz S. Finite element stress analysis of dental prostheses supported by straight and angled implants. Int J Oral Maxillofac Implants. 2009 May-Jun;24(3):391-403.

Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989 Oct;62(4):405-8. doi: 10.1016/0022-3913(89)90170-4.

Mostafa NZ, Ruse ND, Ford NL, Carvalho RM, Wyatt CCL. Marginal fit of lithium disilicate crowns fabricated using conventional and digital methodology: a three-dimensional analysis. J Prosthodont. 2018 Feb;27(2):145-52. doi: 10.1111/jopr.12656.

Toniollo MB, Macedo AP, Silveira Rodrigues RC, Ribeiro RF, de Mattos MG. A three-dimensional finite element analysis of the stress distribution generated by splinted and nonsplinted prostheses in the rehabilitation of various bony ridges with regular or short morse taper implants. Int J Oral Maxillofac Implants. 2017;32(2):372-6. doi: 10.11607/jomi.4696.

Bonfante EA, Coelho PG. A critical perspective on mechanical testing of implants and prostheses. 2016 Mar;28(1):18-27. doi: 10.1177/0022034515624445.

Flask JD, Thompson GA, Singh M, Berzins DW. Edge chipping of translucent zirconia. J Prosthet Dent. 2021 Feb 11;S0022-3913(20)30801-5. doi: 10.1016/j.prosdent.2020.12.009.

Yamaguchi H, Takahashi M, Sasaki K, Takada Y. Mechanical properties and microstructures of cast dental Ti-Fe alloys. Dent Mater J. 2021 Jan;40(1):61-7. doi: 10.4012/dmj.2019-254.

Rezende CEE, Borges AFS, Gonzaga CC, Duan Y, Rubo JH, Griggs JA. Effect of cement space on stress distribution in Y-TZP based crowns. Dent Mater. 2017 Feb;33(2):144-51. doi: 10.1016/j.dental.2016.11.006.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Brazilian Journal of Oral Sciences

Downloads

Download data is not yet available.