Banner Portal
Effect of frozen storage on preservation of a silicone-based test food material
PDF

Keywords

Mastication
Freezing
Flexural strength
Silicone elastomers

How to Cite

1.
Castro GD de, Sánchez-Ayala A, De La Torre Canales G, Figueredo OMC de, Câmara-Souza MB, Amaral CF do, et al. Effect of frozen storage on preservation of a silicone-based test food material. Braz. J. Oral Sci. [Internet]. 2022 Mar. 23 [cited 2024 Apr. 25];21(00):e225757. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8665757

Abstract

Aim: This study aimed to evaluate the effect of frozen storage on the physical properties of a silicone-based test food material, highly used to evaluate the masticatory performance in research settings. Methods: A total of 1,666 silicone cubes of Optosil Comfort® with 5.6-mm edges were shaped and stored at -18°C. The cubes were subsequently tested for flexural strength (maximum force, displacement, stress, and strain) before breaking (n = 136), changes in weight and size (n = 170), and masticatory performance (n = 1360) at eight timepoints: immediately after cube preparation (baseline, no freezing), and 1, 2, 3 and 4 weeks, and 2, 4 and 6 months after frozen storage. The cubes were thawed 8 h before each assessment. Results: The maximum force, stress, maximum displacement, and deformation values for the cubes were not affected by freezing (P > 0.05). At all of the time points, the cubes exhibited similar weight (P = 0.366) and size (identical values). The masticatory performance for the cubes also showed no differences from baseline through 6 months (P = 0.061). Conclusion: Freezing Optosil Comfort® silicone cubes did not alter the physical and mechanical properties of the material, being suitable to optimize the assessment of masticatory parameters for research purposes.

https://doi.org/10.20396/bjos.v21i00.8665757
PDF

References

van der Glas HW, Al-Ibrahim A, Lyons MF. A stable artificial test food suitable for labeling to quantify selection and breakage in subjects with impaired chewing ability. J Texture Stud. 2012;43(4):287-98. doi: 10.1111/j.1745-4603.2011.00344.x

Gonçalves TMSV, Schimmel M, van der Bilt A, Chen J, van der Glas HW, Kohyama K, et al. Consensus on the terminologies and methodologies for masticatory assessment. J Oral Rehabil. 2021 Jun;48(6):745-61. doi: 10.1111/joor.13161.

Sánchez-Ayala A, Vilanova LS, Costa MA, Farias-Neto A. Reproducibility of a silicone-based test food to masticatory performance evaluation by different sieve methods. Braz Oral Res. 2014;28:S1806-83242014000100226. doi: 10.1590/1807-3107bor-2014.vol28.0004.

Slagter AP, Bosman F, Van der Bilt A. Comminution of two artificial test foods by dentate and edentulous subjects. J Oral Rehabil. 1993 Mar;20(2):159-76. doi: 10.1111/j.1365-2842.1993.tb01599.x.

Lucas PW, Luke DA. Optimum mouthful for food comminution in human mastication. Arch Oral Biol. 1984;29(3):205-10. doi: 10.1016/0003-9969(84)90056-6.

Sanchez-Ayala A, Ambrosano GM, Rodrigues Garcia RC. Influence of length of occlusal support on masticatory function of free-end removable partial dentures. Int J Prosthodont. 2012 Sep-Oct;25(5):472-9.

Campos SS, Pereira CV, Zangerônimo MG, Marques LS, Pereira LJ. Influence of disinfectant solutions on test materials used for the determination of masticatory performance. Braz Oral Res. 2013;27(3):238-44. doi: 10.1590/S1806-83242013005000013.

Albert TE, Buschang PH, Throckmorton GS. Masticatory performance: a protocol for standardized production of an artificial test food. J Oral Rehabil. 2003 Jul;30(7):720-2. doi: 10.1046/j.1365-2842.2003.01155.x.

Pereira LJ, van der Bilt A. The influence of oral processing, food perception and social aspects on food consumption: a review. J Oral Rehabil. 2016 Aug;43(8):630-48. doi: 10.1111/joor.12395.

Mazurek P, Vudayagiri S, Skov AL. How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem Soc Rev. 2019 Mar 18;48(6):1448-64. doi: 10.1039/c8cs00963e.

Sánchez-Ayala A, Farias-Neto A, Campanha NH, Garcia RC. Relationship between chewing rate and masticatory performance. Cranio. 2013 Apr;31(2):118-22. doi: 10.1179/crn.2013.019.

Carlo HL, Fonseca RB, Soares CJ, Correr AB, Correr-Sobrinho L, Sinhoreti MA. Inorganic particle analysis of dental impression elastomers. Braz Dent J. 2010;21(6):520-7. doi: 10.1590/s0103-64402010000600007.

Sluyters JH, Sluyters-Rehbach M. Deviation from van't hoff behavior of solids at low temperature. ACS Omega. 2017 May 31;2(5):2317-25. doi: 10.1021/acsomega.7b00169.

Arvidson K, Johansson EG. The freezing-effect on the dimensional stability of impression materials. Swed Dent J. 1978;2(2):61-5.

Silva SM, Salvador MC. Effect of the disinfection technique on the linear dimensional stability of dental impression materials. J Appl Oral Sci. 2004 Sep;12(3):244-9. doi: 10.1590/s1678-77572004000300016.

Liénard, R, De Winter, J, Coulembier, O. Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. J Polym Sci. 2020;58:1481-502. doi:10.1002/pol.20200236.

Horodecka S, Strachota A, Mossety-Leszczak B, Strachota B, Šlouf M, Zhigunov A, et al. Low-Temperature Meltable Elastomers Based on Linear Polydimethylsiloxane Chains Alpha, Omega-Terminated with Mesogenic Groups as Physical Crosslinkers: A Passive Smart Material with Potential as Viscoelastic Coupling. Part I: Synthesis and Phase Behavior. Polymers (Basel). 2020 Oct 25;12(11):2476. doi: 10.3390/polym12112476.

Kondratyuk R. Determination of the lower limit of the working temperatures of silicone elastomers for the manufacture of electronics products. Vector High Technol. 2013;4:52-7.

Bezdomnikov AA, Emel’yanenko AM, Emel’yanenko KA, Boinovich LB. Delay in the freezing of supercooled water drops on superhydrophobic surfaces of silicone rubber at negative temperatures. Russ J Phys Chem. 2018;92:178-84. doi: 10.1134/S0036024418010077.

Xiang K, Huang G, Zheng J, Wang X, xian Li G, Huang J. Accelerated thermal ageing studies of polydimethylsiloxane (PDMS) rubber. J Polym Res. 2012 May;19(5):9869-75. doi: 10.1007/s10965-012-9869-6..

Colin X, Audouin L, Verdu J. Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Part 3: Oxidation induced changes of elastic properties. Polym Degrad Stab. 2007;92:906-14. doi: 10.1016/J.POLYMDEGRADSTAB.2007.01.013.

Papadogiannis D, Lakes R, Palaghias G, Papadogiannis Y. Effect of storage time on the viscoelastic properties of elastomeric impression materials. J Prosthodont Res. 2012 Jan;56(1):11-8. doi: 10.1016/j.jpor.2011.03.002.

Lewicki JP, Liggat JJ, Patel M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym Degrad Stab. 2009 Sep;94(9):1548-57. doi: 10.1016/j.polymdegradstab.2009.04.030.

van der Glas HW, Liu T, Zhang Y, Wang X, Chen J. Optimizing a determination of chewing efficiency using a solid test food. J Texture Stud. 2020 Feb;51(1):169-84. doi: 10.1111/jtxs.12477.

Liu T, Wang X, Chen J, van der Glas HW. Determining chewing efficiency using a solid test food and considering all phases of mastication. Arch Oral Biol. 2018 Jul;91:63-77. doi: 10.1016/j.archoralbio.2018.04.002.

Elgestad Stjernfeldt P, Sjögren P, Wårdh I, Boström AM. Systematic review of measurement properties of methods for objectively assessing masticatory performance. Clin Exp Dent Res. 2019 Jan 31;5(1):76-104. doi: 10.1002/cre2.154.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Brazilian Journal of Oral Sciences

Downloads

Download data is not yet available.