Banner Portal
Influence of diameter in the stress distribution of extra-short dental implants under axial and oblique load
PDF

Keywords

Jaw, edentulous, partially
Dental implants
Dental prosthesis, implant-supported
Finite element analysis

How to Cite

1.
Vargas-Moreno VF, Gomes RS, Ribeiro MC de O, Freitas MIM, Del Bel Cury AA, Marcello-Machado RM. Influence of diameter in the stress distribution of extra-short dental implants under axial and oblique load: a finite element analysis. Braz. J. Oral Sci. [Internet]. 2023 Jun. 27 [cited 2024 May 6];22(00):e238152. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8668152

Abstract

Aim: This study evaluated the influence of a wide diameter on extra-short dental implant stress distribution as a retainer for single implant-supported crowns in the atrophic mandible posterior region under axial and oblique load. Methods: Four 3D digital casts of an atrophic mandible, with a single implant-retained crown with a 3:1 crown-to-implant ratio, were created for finite element analysis. The implant diameter used was either 4 mm (regular) or 6 mm (wide), both with 5 mm length. A 200 N axial or 30º oblique load was applied to the mandibular right first molar occlusal surface. The equivalent von Mises stress was recorded for the abutment and implant, minimum principal stress, and maximum shear stress for cortical and cancellous bone. Results: Oblique load increased the stress in all components when compared to axial load. Wide diameter implants showed a decrease of von Mises stress around 40% in both load directions at the implant, and an increase of at least 3.6% at the abutment. Wide diameter implants exhibited better results for cancellous bone in both angulations. However, in the cortical bone, the minimum principal stress was at least 66% greater for wide than regular diameter implants, and the maximum shear stress was more than 100% greater. Conclusion: Extra-short dental implants with wide diameter result in better biomechanical behavior for the implant, but the implications of a potential risk of overloading the cortical bone and bone loss over time, mainly under oblique load, should be investigated.

https://doi.org/10.20396/bjos.v22i00.8668152
PDF

References

Ravidà A, Barootchi S, Askar H, Suárez-López Del Amo F, Tavelli L, Wang HL. Long-Term Effectiveness of Extra-Short (≤ 6 mm) Dental Implants: A Systematic Review. Int J Oral Maxillofac Implants. 2019 Jan/Feb;34(1):68-84. doi: 10.11607/jomi.6893.

Bordin D, Bergamo ETP, Bonfante EA, Fardin VP, Coelho PG. Influence of platform diameter in the reliability and failure mode of extra-short dental implants. J Mech Behav Biomed Mater. 2018 Jan;77:470-4. doi: 10.1016/j.jmbbm.2017.09.020.

Al-Johany SS, Al Amri MD, Alsaeed S, Alalola B. Dental implant length and diameter: a proposed classification scheme. J Prosthodont. 2017 Apr;26(3):252-60. doi: 10.1111/jopr.12517.

Lee SA, Lee CT, Fu MM, Elmisalati W, Chuang SK. Systematic review and meta-analysis of randomized controlled trials for the management of limited vertical height in the posterior region: short implants (5 to 8 mm) vs longer implants (> 8 mm) in vertically augmented sites. Int J Oral Maxillofac Implants. 2014 Sep-Oct;29(5):1085-97. doi: 10.11607/jomi.3504.

de N Dias FJ, Pecorari VGA, Martins CB, Del Fabbro M, Casati MZ. Short implants versus bone augmentation in combination with standard-length implants in posterior atrophic partially edentulous mandibles: systematic review and meta-analysis with the Bayesian approach. Int J Oral Maxillofac Surg. 2019 Jan;48(1):90-6. doi: 10.1016/j.ijom.2018.05.009.

Zadeh HH, Guljé F, Palmer PJ, Abrahamsson I, Chen S, Mahallati R, et al. Marginal bone level and survival of short and standard-length implants after 3 years: An Open Multi-Center Randomized Controlled Clinical Trial. Clin Oral Implants Res. 2018 Aug;29(8):894-906. doi: 10.1111/clr.13341.

Tawil G, Aboujaoude N, Younan R. Influence of prosthetic parameters on the survival and complication rates of short implants. Int J Oral Maxillofac Implants. 2006 Mar-Apr;21(2):275-82.

Sotto-Maior BS, Senna PM, da Silva WJ, Rocha EP, Del Bel Cury AA. Influence of crown-to-implant ratio, retention system, restorative material, and occlusal loading on stress concentrations in single short implants. Int J Oral Maxillofac Implants. 2012 May-Jun;27(3):e13-8.

Brink J, Meraw SJ, Sarment DP. Influence of implant diameter on surrounding bone. Clin Oral Implants Res. 2007 Oct;18(5):563-8. doi: 10.1111/j.1600-0501.2007.01283.x.

Arinc H. Effects of prosthetic material and framework design on stress distribution in dental implants and peripheral bone: a three-dimensional finite element analysis. Med Sci Monit. 2018 Jun;24:4279-87. doi: 10.12659/MSM.908208.

Verma M, Nanda A, Sood A. Principles of occlusion in implant dentistry. Interview. J Int Clin Dent Res Organ. 2015 May;7(3):S27-33. doi: 10.4103/2231-0754.172924.

Reddy MS, Sundram R, Eid Abdemagyd HA. Application of finite element model in implant dentistry: a systematic review. J Pharm Bioallied Sci. 2019 May;11(Suppl 2):S85-S91. doi: 10.4103/JPBS.JPBS_296_18.

Sütpideler M, Eckert SE, Zobitz M, An KN. Finite element analysis of effect of prosthesis height, angle of force application, and implant offset on supporting bone. Int J Oral Maxillofac Implants. 2004 Nov-Dec;19(6):819-25.

Meijer HJA, Boven C, Delli K, Raghoebar GM. Is there an effect of crown-to-implant ratio on implant treatment outcomes? A systematic review. Clin Oral Implants Res. 2018 Oct;29 Suppl 18(Suppl 18):243-52. doi: 10.1111/clr.13338.

Garaicoa-Pazmiño C, Suárez-López del Amo F, Monje A, Catena A, Ortega-Oller I, Galindo-Moreno P, et al. Influence of crown/implant ratio on marginal bone loss: a systematic review. J Periodontol. 2014 Sep;85(9):1214-21. doi: 10.1902/jop.2014.130615.

Tang Y, Yu H, Wang J, Gao M, Qiu L. Influence of crown-to-implant ratio and different prosthetic designs on the clinical conditions of short implants in posterior regions: A 4-year retrospective clinical and radiographic study. Clin Implant Dent Relat Res. 2020 Feb;22(1):119-27. doi: 10.1111/cid.12881.

Monje A, Fu J-H, Chan H-L, Suarez F, Galindo-Moreno P, Catena A, et al. Do implant length and width matter for short dental implants (<10 mm)? A meta-analysis of prospective studies. J Periodontol. 2013 Dec;84(12):1783-91. doi: 10.1902/jop.2013.120745.

Silva NR, Bonfante E, Rafferty BT, Zavanelli RA, Martins LL, Rekow ED, et al. Conventional and modified veneered zirconia vs. metalloceramic: fatigue and finite element analysis. J Prosthodont. 2012 Aug;21(6):433-9. doi: 10.1111/j.1532-849X.2012.00861.x.

Sotto-Maior BS, Mercuri EG, Senna PM, Assis NM, Francischone CE, Del Bel Cury AA. Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data. Comput Methods Biomech Biomed Engin. 2016;19(7):699-706. doi: 10.1080/10255842.2015.1052418.

Chang Y, Tambe AA, Maeda Y, Wada M, Gonda T. Finite element analysis of dental implants with validation: to what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int J Implant Dent. 2018 Mar;4(1):7. doi: 10.1186/s40729-018-0119-5.

Bordin D, Bergamo ETP, Fardin VP, Coelho PG, Bonfante EA. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis. J Mech Behav Biomed Mater. 2017 Jul;71:244-9. doi: 10.1016/j.jmbbm.2017.03.022.

Cruz M, Wassall T, Toledo EM. Finite element stress analysis of dental prostheses supported by straight and angled implants. J Prosthet Dent. 2009 Nov;104(5):346. doi: 10.1016/S0022-3913(10)60154-0.

Erkmen E, Meriç G, Kurt A, Tunç Y, Eser A. Biomechanical comparison of implant retained fixed partial dentures with fiber reinforced composite versus conventional metal frameworks: a 3D FEA study. J Mech Behav Biomed Mater. 2011 Jan;4(1):107-16. doi: 10.1016/j.jmbbm.2010.09.011.

Arinc H. Effects of prosthetic material and framework design on stress distribution in dental implants and peripheral bone: a three-dimensional finite element analysis. Med Sci Monit. 2018 Jun;24:4279-87. doi: 10.12659/MSM.908208.

Li LL, Wang ZY, Bai ZC, Mao Y, Gao B, Xin HT, et al. Three-dimensional finite element analysis of weakened roots restored with different cements in combination with titanium alloy posts. Chin Med J (Engl). 2006 Feb;119(4):305-11.

Amaral CF, Gomes RS, Rodrigues Garcia RCM, Del Bel Cury AA. Stress distribution of single-implant-retained overdenture reinforced with a framework: A finite element analysis study. J Prosthet Dent. 2018 May;119(5):791-6. doi: 10.1016/j.prosdent.2017.07.016.

Elias DM, Valerio CS, de Oliveira DD, Manzi FR, Zenóbio EG, Seraidarian PI. Evaluation of Different Heights of Prosthetic Crowns Supported by an Ultra-Short Implant Using Three-Dimensional Finite Element Analysis. Int J Prosthodont. 2020 Jan/Feb;33(1):81-90. doi: 10.11607/ijp.6247.

Pattin CA, Caler WE, Carter DR. Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech. 1996 Jan;29(1):69-79. doi: 10.1016/0021-9290(94)00156-1.

Sugiura T, Horiuchi K, Sugimura M, Tsutsumi S. Evaluation of threshold stress for bone resorption around screws based on in vivo strain measurement of miniplate. J Musculoskelet Neuronal Interact. 2000 Dec;1(2):165-70.

Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent. 1996 Dec;76(6):633-40. doi: 10.1016/s0022-3913(96)90442-4.

Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent. 2004 Dec;92(6):523-30. doi: 10.1016/j.prosdent.2004.07.024.

Chen LJ, He H, Li YM, Li T, Guo XP, Wang RF. Finite element analysis of stress at implant–bone interface of dental implants with different structures. Trans Nonferrous Met Soc China. 2011;21(7):1602-10. doi: 10.1016/S1003-6326(11)60903-5.

Pilliar RM, Deporter DA, Watson PA, Valiquette N. Dental implant design--effect on bone remodeling. J Biomed Mater Res. 1991 Apr;25(4):467-83. doi: 10.1002/jbm.820250405.

Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod. 2004 Feb;74(1):3-15. doi: 10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2.

Breme H, Biehl V, Reger N, Gawalt ES. Metallic biomaterials: titanium and titanium alloys. In: Murphy W, Black J, Hastings G. Handbook of biomaterial properties. New York, NY: Springer New York; 2016. Chapter 1c. p.167-89.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Vanessa Felipe Vargas-Moreno, Rafael Soares Gomes , Michele Costa de Oliveira Ribeiro, Mariana Itaborai Moreira Freitas , Altair Antoninha Del Bel Cury , Raissa Micaela Marcello-Machado

Downloads

Download data is not yet available.