Banner Portal
Flexural strength and Vickers hardness of milled and 3D-printed resins for provisional dental restorations
PDF

Keywords

Dental restoration, temporary
Flexural strength
Hardness tests
Computer-aided design

How to Cite

1.
Souza ALC, Cruvinel Filho JL de O, Rocha SS da. Flexural strength and Vickers hardness of milled and 3D-printed resins for provisional dental restorations. Braz. J. Oral Sci. [Internet]. 2023 Oct. 16 [cited 2024 Jun. 29];22(00):e238439. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8668439

Abstract

Various forms of temporary resins are offered on the market; however, the properties of temporary resins obtained by milling and 3D printing have not been fully examined. This study aimed to compare the flexural strength and Vickers hardness of milled and 3D-printed resins. Methods: Three resins were tested: Evolux PMMA (milled resin), Cosmos Temp (3D-printed resin), and Structur 2 SC (bis-acrylic resin, group control). Specimens were prepared with rectangular shapes (n = 12) for flexural strength measurements and disc shapes (n = 9) for Vickers hardness tests. Flexural strength tests were performed at a crosshead speed of 0.75 mm/min, and the Vickers hardness was measured under a load of 20 N for 10 s. The obtained data were subjected to the Kruskal–Wallis test. Results: A significant difference (p < 0.05) in flexural strength was observed among the three sample groups: Evolux PMMA (111.76 MPa), Structur 2 SC (87.34 MPa), and Cosmos Temp (56.83 MPa). No significant difference (p < 0.05) was observed between the Vickers hardness values of Structur 2 SC (33.37 VHN) and Evolux PMMA (29.11 VHN); however, both materials were statistically superior to Cosmos Temp (10.90 VHN). Conclusion: While the mechanical properties of the milled resin were superior or similar to those of the bisacrylic resin, the 3D-printed resin was statistically inferior to both the milled and bis-acrylic resins.

https://doi.org/10.20396/bjos.v22i00.8668439
PDF

References

Young HM, Smith CT, Morton D. Comparative in vitro evaluation of two provisional restorative materials. J Prosthet Dent. 2001 Feb;85(2):129-32. doi: 10.1067/mpr.2001.112797.

Haselton DR, Diaz-Arnold AM, Vargas MA. Flexural strength of provisional crown and fixed partial denture resins. J Prosthet Dent. 2002 Feb;87(2):225-8. doi: 10.1067/mpr.2002.121406.

Chen HL, Lai YL, Chou IC, Hu CJ, Lee SY. Shear bond strength of provisional restoration materials repaired with light-cured resins. Oper Dent. 2008 Sep-Oct;33(5):508-15. doi: 10.2341/07-130.

Dureja I, Yadav B, Malhotra P, Dabas N, Bhargava A, Pahwa R. A comparative evaluation of vertical marginal fit of provisional crowns fabricated by computer-aided design/computer-aided manufacturing technique and direct (intraoral technique) and flexural strength of the materials: An in vitro study. J Indian Prosthodont Soc. 2018 Oct-Dec;18(4):314-320. doi: 10.4103/jips.jips_306_17.

Lee S, Hong SJ, Paek J, Pae A, Kown KR, Noh K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J Adv Prosthodont. 2019 Feb;11(1):55-64. doi: 10.4047/jap.2019.11.1.55.

Cicciù M, Fiorillo L, D'Amico C, Gambino D, Amantia EM, Laino L, et al. 3D digital impression systems compared with traditional techniques in dentistry: A recent data systematic review. Materials (Basel). 2020 Apr 23;13(8):1982. doi: 10.3390/ma13081982.

Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J. 2011 Jun;56 Suppl 1:97-106. doi: 10.1111/j.1834-7819.2010.01300.x.

Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014 Sep;112(3):649-57. doi: 10.1016/j.prosdent.2014.01.012.

Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948. doi: 10.1155/2014/783948.

Park SM, Park JM, Kim SK, Heo SJ, Koak JY. Flexural strength of 3d-printing resin materials for provisional fixed dental prostheses. Materials (Basel). 2020 Sep;13(18):3970. doi: 10.3390/ma13183970.

Dawood A, Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015 Dec;219(11):521-9. doi: 10.1038/sj.bdj.2015.914.

Yen HH, Stathopoulou PG. CAD/CAM and 3D-printing applications for alveolar ridge augmentation. Curr Oral Health Rep. 2018 Jun;5(2):127-32. doi: 10.1007/s40496-018-0180-4.

Lutz AM, Hampe R, Roos M, Lumkemann N, Eichberger M, Stawarczyk B. Fracture resistance and 2-body wear of 3-dimensional-printed occlusal devices. J Prosthet Dent. 2019 Jan;121(1):166-72. doi: 10.1016/j.prosdent.2018.04.007.

American National Standard/American Dental Association Standard. Polymer-Based Restorative Materials; No. 27. Washington, DC: American National Standard; 2016.

Givens EJ Jr, Neiva G, Yaman P, Dennison JB. Marginal adaptation and color stability of four provisional materials. J Prosthodont. 2008 Feb;17(2):97-101. doi: 10.1111/j.1532-849X.2007.00256.x.

Jo LJ, Shenoy KK, Shetty S. Flexural strength and hardness of resins for interim fixed partial dentures. Indian J Dent Res. 2011 Jan-Feb;22(1):71-6. doi: 10.4103/0970-9290.79992.

Perea-Lowery L, Gibreel M, Vallittu PK, Lassila L. Characterization of the mechanical properties of CAD/CAM polymers for interim fixed restorations. Dent Mater J. 2020 Mar;39(2):319-25. doi: 10.4012/dmj.2019-042.

Digholkar S, Madhav VN, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc. 2016 Oct-Dec;16(4):328-34. doi: 10.4103/0972-4052.191288.

Diaz-Arnold AM, Dunne JT, Jones AH. Microhardness of provisional fixed prosthodontic materials. J Prosthet Dent. 1999 Nov;82(5):525-8. doi: 10.1016/s0022-3913(99)70050-8.

Derban P, Negrea R, Rominu M, Marsavina L. Influence of the printing angle and load direction on flexure strength in 3d printed materials for provisional dental restorations. Materials (Basel). 2021 Jun;14(12):3376. doi: 10.3390/ma14123376.

Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 2018 Feb;34(2):192-200. doi: 10.1016/j.dental.2017.10.003.

Dedem P, Türp JC. Digital Michigan splint - from intraoral scanning to plasterless manufacturing. Int J Comput Dent. 2016;19(1):63-76.

Güth JF, Almeida e Silva JS, Beuer FF, Edelhoff d. Enhancing the predictability of complex rehabilitation with a removable CAD/CAM-fabricated long-term provisional prosthesis: a clinical report. J Prosthet Dent. 2012 Jan;107(1):1-6. doi: 10.1016/S0022-3913(11)00171-5.

Alt V, Hannig M, Wöstmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 2011 Apr;27(4):339-47. doi: 10.1016/j.dental.2010.11.012.

Tapie L, Lebon N, Mawussi B, Fron-Chabouis H, Duret F, Attal JP. Understanding dental CAD/CAM for restorations--accuracy from a mechanical engineering viewpoint. Int J Comput Dent. 2015;18(4):343-67.

Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016 Jun;115(6):760-7. doi: 10.1016/j.prosdent.2015.12.002.

Osman RB, Alharbi N, Wismeijer D. Build angle: does it influence the accuracy of 3d-printed dental restorations using digital light-processing technology? Int J Prosthodont. 2017 Mar/Apr;30(2):182-88. doi: 10.11607/ijp.5117.

Cascón WP, Nuñez AP, Díez IC, Revilla-Leon M. Laboratory workflow to obtain long-term injected resin composite interim restorations from an additive manufactured esthetic diagnostic template. J Esthet Restor Dent. 2019 Jan;31(1):13-9. doi: 10.1111/jerd.12419.

Väyrynen VOE, Tanner J, Vallittu PK. The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography. J Prosthet Dent. 2016 Nov;116(5):811-7. doi: 10.1016/j.prosdent.2016.03.018.

Unkovskiy A, Bui PH, Schille C, Geis-Gerstorfer J, Huettig F, Splintyzk S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent Mater. 2018 Dec;34(12):e324-33. doi: 10.1016/j.dental.2018.09.011.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Ana Luiza Caetano Souza, Jorge Luiz de Oliveira Cruvinel Filho, Sicknan Soares da Rocha

Downloads

Download data is not yet available.