Banner Portal
Sensitivity and specificity of salivary pipecolic acid in head and neck squamous cell carcinoma
PDF

Keywords

Saliva
Biomarkers
Squamous cell carcinoma of head and neck

How to Cite

1.
Ferrazzo KL, Melo LDW de, Danesi CC, Thomas A, Bonzanini LIL, Zanatta N. Sensitivity and specificity of salivary pipecolic acid in head and neck squamous cell carcinoma. Braz. J. Oral Sci. [Internet]. 2023 Oct. 6 [cited 2024 Apr. 27];22(00):e238473. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8668473

Abstract

Aim: The aim of the present preliminary case-control study was to test the sensitivity and specificity of salivary pipecolic acid in predicting head and neck squamous cell carcinoma (HNSCC). Methods: High-performance liquid chromatography was used for the analysis of non-stimulated saliva samples from 40 individuals: 20 in the case group (recently diagnosed with untreated HNSCC) and 20 in the control group (individuals without cancer). Both groups included patients taking daily oral hypoglycemic drugs (comorbidity). The case and control groups were matched at a proportion of 1:1 for sex and comorbidity. Results: Mean salivary levels of pipecolic acid were 169.38 ng/ mL in the case group and 114.66 ng/mL in the control group (p<0.001). Individuals who took oral hypoglycemic drugs had higher levels of pipecolic acid in both the case and control groups (p<0.001). The receiver operating characteristic curve analysis revealed 90% sensitivity and 65% specificity for head and neck cancer, with an area under the curve of 0.838 between the case and control groups. Conclusions: Pipecolic acid had high sensitivity for the diagnosis of HNSCC but low specificity in the sample analyzed. Our findings suggest that salivary pipecolic acid levels are associated with glucose homeostasis. Studies with larger samples are required to evaluate the specificity of this metabolite.

https://doi.org/10.20396/bjos.v22i00.8668473
PDF

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-49. doi: 10.3322/caac.21660.

Amit M, Yen TC, Liao CT, Chaturvedi P, Agarwal JP, Kowalski LP, et al. Improvement in survival of patients with oral cavity squamous cell carcinoma: an international collaborative study. Cancer. 2013 Dec;119(24):4242-8. doi: 10.1002/cncr.28357.

Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep. 2016 Aug;6:31520. doi: 10.1038/srep31520.

Nagler RM. Saliva as a tool for oral cancer diagnosis and prognosis. Oral Oncol. 2009 Dec;45(12):1006-10. doi: 10.1016/j.oraloncology.2009.07.005.

Shankar AA, Alex S, Routray S. Incorporation of salivary metabolomics in oral cancer diagnostics. Oral Oncol. 2014 Oct;50(10):e53-4. doi: 10.1016/j.oraloncology.2014.07.013.

Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. doi: 10.1007/s11306-009-0178-y.

King SL, Hegadoren KM. Stress hormones: how do they measure up? Biol Res Nurs. 2002 Oct;4(2):92-103. doi: 10.1177/1099800402238334.

Liu J, Duan Y. Saliva: a potential media for disease diagnostics and monitoring. Oral Oncol. 2012 Jul;48(7):569-77. doi: 10.1016/j.oraloncology.2012.01.021.

Nonaka T, Wong DTW. Liquid Biopsy in Head and Neck Cancer: Promises and Challenges. J Dent Res. 2018 Jun;97(6):701-8. doi: 10.1177/0022034518762071.

Gohel V, Jones JA, Wehler CJ. Salivary biomarkers and cardiovascular disease: a systematic review. Clin Chem Lab Med. 2018 Aug;56(9):1432-42. doi: 10.1515/cclm-2017-1018.

Hizir MS, Balcioglu M, Rana M, Robertson NM, Yigit MV. Simultaneous detection of circulating oncomiRs from body fluids for prostate cancer staging using nanographene oxide. ACS Appl Mater Interfaces. 2014 Sep;6(17):14772-8. doi: 10.1021/am504190a.

Xie Z, Yin X, Gong B, Nie W, Wu B, Zhang X, et al. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res (Phila). 2015 Feb;8(2):165-73. doi: 10.1158/1940-6207.CAPR-14-0192.

Guerra EN, Acevedo AC, Leite AF, Gozal D, Chardin H, De Luca Canto G. Diagnostic capability of salivary biomarkers in the assessment of head and neck cancer: a systematic review and meta-analysis. Oral Oncol. 2015 Sep;51(9):805-18. doi: 10.1016/j.oraloncology.2015.06.010.

Lim Y, Sun CX, Tran P, Punyadeera C. Salivary epigenetic biomarkers in head and neck squamous cell carcinomas. Biomark Med. 2016;10(3):301-13. doi: 10.2217/bmm.16.2.

Fujita T, Hada T, Higashino K. Origin of D- and L-pipecolic acid in human physiological fluids: a study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clin Chim Acta. 1999 Sep;287(1-2):145-56. doi: 10.1016/s0009-8981(99)00129-1.

Peduto A, Baumgartner MR, Verhoeven NM, Rabier D, Spada M, Nassogne MC, et al. Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab. 2004 Jul;82(3):224-30. doi: 10.1016/j.ymgme.2004.04.010.

Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. Biochim Biophys Acta. 2006 Dec;1763(12):1733-48. doi: 10.1016/j.bbamcr.2006.09.010.

Wang Q, Gao P, Wang X, Duan Y. Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clin Chim Acta. 2014 Jan;427:79-85. doi: 10.1016/j.cca.2013.10.004.

Patterson AD, Bonzo JA, Li F, Krausz KW, Eichler GS, Aslam S, et al. Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. J Biol Chem. 2011 Jun;286(22):19511-22. doi: 10.1074/jbc.M111.221739.

Priyadarsini S, McKay TB, Sarker-Nag A, Allegood J, Chalfant C, Ma JX, et al. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res. 2016 Dec;153:90-100. doi: 10.1016/j.exer.2016.10.010.

Razquin C, Ruiz-Canela M, Clish CB, Li J, Toledo E, Dennis C, et al. Lysine pathway metabolites and the risk of type 2 diabetes and cardiovascular disease in the PREDIMED study: results from two case-cohort studies. Cardiovasc Diabetol. 2019 Nov;18(1):151. doi: 10.1186/s12933-019-0958-2.

Nalbantoglu S. Metabolomics: basic principles and strategies. In: Nalbantoglu S, Amri H, editors. Molecular medicine. Rijeka: IntechOpen; 2019 [cited 2022 Jan 8]. Available from: https://doi.org/10.5772/intechopen.88563.

Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010 Jun;17(6):1471-4. doi: 10.1245/s10434-010-0985-4.

Ferreira Antunes JL, Toporcov TN, Biazevic MG, Boing AF, Scully C, Petti S. Joint and independent effects of alcohol drinking and tobacco smoking on oral cancer: a large case-control study. PLoS One. 2013 Jul;8(7):e68132. doi: 10.1371/journal.pone.0068132.

Navazesh M, Kumar SK; University of Southern California School of Dentistry. Measuring salivary flow: challenges and opportunities. J Am Dent Assoc. 2008 May;139 Suppl:35S-40S. doi: 10.14219/jada.archive.2008.0353.

Wei J, Xie G, Zhou Z, Shi P, Qiu Y, Zheng X, et al. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer. 2011 Nov;129(9):2207-17. doi: 10.1002/ijc.25881.

Assad DX, Mascarenhas ECP, de Lima CL, de Toledo IP, Chardin H, Combes A, et al. Salivary metabolites to detect patients with cancer: a systematic review. Int J Clin Oncol. 2020 Jun;25(6):1016-36. doi: 10.1007/s10147-020-01660-7.

Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013 Oct;123(10):4309-17. doi: 10.1172/JCI64801.

Esteller M. Epigenetics in cancer. N Engl J Med. 2008 Mar;358(11):1148-59. doi: 10.1056/NEJMra072067.

Chen YW, Kao SY, Wang HJ, Yang MH. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer. 2013 Dec;119(24):4259-67. doi: 10.1002/cncr.28356.

Dyar KA, Eckel-Mahan KL. Circadian Metabolomics in Time and Space. Front Neurosci. 2017 Jul;11:369. doi: 10.3389/fnins.2017.00369.

Ishikawa S, Sugimoto M, Kitabatake K, Tu M, Sugano A, Yamamori I, et al. Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids. 2017 Apr;49(4):761-70. doi: 10.1007/s00726-017-2378-5.

Yan W, Apweiler R, Balgley BM, Boontheung P, Bundy JL, Cargile BJ, et al. Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin Appl. 2009 Jan;3(1):116-34. doi: 10.1002/prca.200800140.

Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006 Aug;24(8):971-83. doi: 10.1038/nbt1235.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Kívia Linhares Ferrazzo, Larissa Daiane Willrich de Melo, Cristiane Cademartori Danesi , Alexander Thomas, Laura Izabel Lampert Bonzanini, Nilo Zanatta

Downloads

Download data is not yet available.