Influence of restorative materials on occlusal and internal adaptation of CAD-CAM inlays

Authors

DOI:

https://doi.org/10.20396/bjos.v21i00.8668852

Keywords:

Dental marginal adaptation, Ceramics, Computer-aided design, Dental materials, Inlays

Abstract

Aim: To evaluate the occlusal and internal marginal adaptation of inlay restorations made of different materials, using CAD-CAM. Methods: Preparations were made for MOD inlays of one-third intercuspal width and 4 mm depth in 30 third human molars. The teeth were restored using CAD-CAM materials (n=10) of nanoceramic resin (Lava Ultimate), polymer-infiltrated ceramic network (VITA ENAMIC), or lithium disilicate glass-ceramic (IPS e.max CAD). The specimens were cemented with dual resin cement and sectioned at the center of the restoration, after which the two halves were evaluated, and photographed The occlusal and internal discrepancy (μm) was determined at five points: cavosurface angle of the occlusal-facial wall (CA-O); center of the facial wall (FW); faciopulpal angle (FPA); center of the pulpal wall (PW); and center of the lingual wall (LW). The data were submitted to the Kruskal-Wallis and the Dunn tests (α=0.05). Results: No difference was observed among the materials regarding the occlusal discrepancy at the CA-O, FPA, or PW internal points. The e.max CAD measurement at FW showed larger internal discrepancy than that of Lava (p=0.02). The internal discrepancy at LW was greater for e.max CAD than VITA ENAMIC (p=0.02). Conclusion: Lithium disilicate glass-ceramic presented greater internal discrepancy in relation to the surrounding walls of the inlay preparations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ana Carolina Rodrigues Cabral, São Leopoldo Mandic College

Department of Restorative Dentistry, São Leopoldo Mandic College, São Leopoldo Mandic Research Institute, Campinas, SP, Brazil.

Waldemir Francisco Vieira Junior, São Leopoldo Mandic College

Department of Restorative Dentistry, São Leopoldo Mandic College, São Leopoldo Mandic Research Institute, Campinas, SP, Brazil.

Roberta Tarkany Basting, São Leopoldo Mandic College

Department of Restorative Dentistry, São Leopoldo Mandic College, São Leopoldo Mandic Research Institute, Campinas, SP, Brazil.

Cecília Pedroso Turssi, São Leopoldo Mandic College

Department of Restorative Dentistry, São Leopoldo Mandic College, São Leopoldo Mandic Research Institute, Campinas, SP, Brazil.

Flávia Lucisano Botelho do Amaral, São Leopoldo Mandic College

Department of Restorative Dentistry, São Leopoldo Mandic College, São Leopoldo Mandic Research Institute, Campinas, SP, Brazil.

Fabiana Mantovani Gomes França, São Leopoldo Mandic College

Department of Restorative Dentistry, São Leopoldo Mandic College, São Leopoldo Mandic Research Institute, Campinas, SP, Brazil.

References

Skorulska A, Piszko P, Rybak Z, Szymonowicz M, Dobrzyński M. Review on polymer, ceramic and composite materials for CAD/CAM indirect restorations in dentistry-application, mechanical characteristics and comparison. Materials (Basel). 2021 Mar;14(7):1592. doi: 10.3390/ma14071592. DOI: https://doi.org/10.3390/ma14071592

Baroudi K, Ibraheen SN. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: A review of the literature. J Int Oral Health. 2015 Apr;7(4):96-104.

Xueyin An, Jing-Huan Fang, Seung-Mi Jeong, Byung-Ho Choi. A CAD-CAM technique for conversion of interim-to-definitive restoration in patients with complete edentulism. J Prosthet Dent. 2017 Aug;120(2):190-93. doi: 10.1016/j.prosdent.2017.10.003. DOI: https://doi.org/10.1016/j.prosdent.2017.10.003

Poticny D, Klim J. CAD-CAM in-office technology: innovations after 25 years for predictable, esthetic outcomes. J Am Dent Assoc. 2010 Jun;141 Suppl 2:5S-9S. doi: 10.14219/jada.archive.2010.0356. DOI: https://doi.org/10.14219/jada.archive.2010.0356

Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, et al. Mechanical properties of composite resin blocks for CAD-CAM. Dent Mater J. 2014;33(5):705-10. doi: 10.4012/dmj.2014-208. DOI: https://doi.org/10.4012/dmj.2014-208

Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD-CAM restorative materials. J Prosthet Dent. 2015 Oct;114(4):587-93z. doi: 10.1016/j.prosdent.2015.04.016. DOI: https://doi.org/10.1016/j.prosdent.2015.04.016

Niem T, Youssef N, Wöstmann B. Energy dissipation capacities of CAD-CAM restorative materials: A comparative evaluation of resilience and toughness. J Prosthet Dent. 2019 Jan;121(1):101-9. doi: 10.1016/j.prosdent.2018.05.003. DOI: https://doi.org/10.1016/j.prosdent.2018.05.003

Yildirim G, Uzun IH, Keles A. Evaluation of marginal and internal adaptation of hybrid and nanoceramic systems with microcomputed tomography: An in vitro study. J Prosthet Dent. 2017 Aug;118(2):200-7. doi: 10.1016/j.prosdent.2016.11.005. DOI: https://doi.org/10.1016/j.prosdent.2016.11.005

Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014 Nov;41(11):853-74. doi: 10.1111/joor.12205. DOI: https://doi.org/10.1111/joor.12205

Tsirogiannis P, Reissmann DR, Heydecke G. Evaluation of the marginal fit of single unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: a systematic review and meta-analysis. J Prosthet Dent. 2016 Sep;116(3):328-35.e2. doi: 10.1016/j.prosdent.2016.01.028. DOI: https://doi.org/10.1016/j.prosdent.2016.01.028

Trajtenberg CP, Caram SJ, Kiat-amnuay S. Microleakage of all ceramic crowns using self-etching resin luting agents. Oper Dent. 2008 Jul-Aug;33(4):392-9. doi: 10.2341/07-101. DOI: https://doi.org/10.2341/07-101

Thompson V, Rekow ED. Dental ceramics and the molar crown testing ground. J Appl Oral Sci. 2004;12(spe):26-36.

doi: 10.1590/s1678-77572004000500004. DOI: https://doi.org/10.1590/S1678-77572004000500004

Alajaji NK, Bardwell D, Finkelman M, Ali A. Micro-CT evaluation of ceramic inlays: comparison of the marginal and internal fit of five and three axis CAM systems with a heat press technique. J Esthet Restor Dent. 2017 Feb;29(1):49-58. doi: 10.1111/jerd.12271. DOI: https://doi.org/10.1111/jerd.12271

Ates SM, Yesil Duymus Z. Influence of Tooth Preparation Design on Fitting Accuracy of CAD-CAM Based Restorations. J Esthet Restor Dent. 2016 Jul;28(4):238-46. doi: 10.1111/jerd.12208. DOI: https://doi.org/10.1111/jerd.12208

Colpani JT, Borba M, Della Bona A. Evaluation of marginal and internal fit of ceramic crown copings. Dent Mater. 2013 Feb;29(2):174-80. doi: 10.1016/j.dental.2012.10.012. DOI: https://doi.org/10.1016/j.dental.2012.10.012

Oz FD, Bolay S. Comparative Evaluation of Marginal Adaptation and Fracture Strength of Different Ceramic Inlays Produced by CEREC Omnicam and Heat-Pressed Technique. Int J Dent. 2018 Apr;2018:5152703. doi: 10.1155/2018/5152703. DOI: https://doi.org/10.1155/2018/5152703

Bona AD, Kelly JR. The clinical success of all-ceramics restorations. J Am Dent Assoc. 2008 Sep;139 suppl:8-13S. doi: 10.14219/jada.archive.2008.0361. DOI: https://doi.org/10.14219/jada.archive.2008.0361

Homsy FR, Özcan M, Khoury M, Majzoub ZAK. Comparison of fit accuracy of pressed lithium disilicate inlays fabricated from wax or resin patterns with conventional and CAD CAM technologies. J Prosthet Dent. 2018 Oct;120(4):530-6. doi: 10.1016/j.prosdent.2018.04.006. DOI: https://doi.org/10.1016/j.prosdent.2018.04.006

Shamseddine L, Mortada R, Rifai K, Chidiac JJ. Marginal and internal fit of pressed ceramic crowns made from conventional and computer-aided design/computer-aided manufacturing wax patterns: an in vitro comparison. J Prosthet Dent. 2016 Aug;116(2):242-8. doi: 10.1016/j.prosdent.2015.12.005. DOI: https://doi.org/10.1016/j.prosdent.2015.12.005

Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, et al. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J Prosthet Dent. 2019 Apr;121(4):590-7. doi: 10.1016/j.prosdent.2018.06.006. DOI: https://doi.org/10.1016/j.prosdent.2018.06.006

Stappert CF, Guess PC, Chitmongkolsuk S, Gerds T, Strub JR. Partial coverage restoration systems on molars--comparison of failure load after exposure to a mastication simulator. J Oral Rehabil. 2006 Sep;33(9):698-705. doi: 10.1111/j.1365-2842.2006.01529.x. DOI: https://doi.org/10.1111/j.1365-2842.2006.01529.x

Vichi A, Sedda M, Del Siena F, Louca C, Ferrari M. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 1: Chairside materials. Am J Dent. 2013 Oct;26(5):255-9.

Ludovichetti FS, Trindade FZ, Werner A, Kleverlaan CJ, Fonseca RG. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J Prosthet Dent. 2018 Aug;120(2):318.e1-318.e8. doi:10.1016/j.prosdent.2018.05.011. DOI: https://doi.org/10.1016/j.prosdent.2018.05.011

Huang XQ, Hong NR, Zou LY, Wu SY, Li Y. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs. Clin Oral Investig. 2020 Sep;24(9):3157-3167. doi: 10.1007/s00784-019-03190-7. DOI: https://doi.org/10.1007/s00784-019-03190-7

Coldea A, Fischer J, Swain MV, Thiel N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater. 2015 Jun;31(6):684-94. doi: 10.1016/j.dental.2015.03.007. DOI: https://doi.org/10.1016/j.dental.2015.03.007

Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD-CAM restorative materials. Dent Mater. 2016 Nov;32(11):e275-83. doi: 10.1016/j.dental.2016.08.222. DOI: https://doi.org/10.1016/j.dental.2016.08.222

Elmougy A, Schiemann AM, Wood D, Pollington S, Martin N. Characterisation of machinable structural polymers in restorative dentistry. Dental Mater. 2018 Oct;34(1):1509-17. doi: 10.1016/j.dental.2018.06.007. DOI: https://doi.org/10.1016/j.dental.2018.06.007

Chavali R, Nejat AH, Lawson NC. Machinability of CAD CAM materials. J Prosthet Dent. 2017 Aug;118(2):194-9. doi: 10.1016/j.prosdent.2016.09.022. DOI: https://doi.org/10.1016/j.prosdent.2016.09.022

Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent. 2007 Dec;35(12):897-902. doi: 10.1016/j.jdent.2007.07.002. DOI: https://doi.org/10.1016/j.jdent.2007.07.002

Castro EF, Azevedo VLB, Nima G, Andrade OS, Dias CTDS, Giannini M. Adhesion, mechanical properties, and microstructure of resin-matrix CAD-CAM ceramics. J Adhes Dent. 2020;22(4):421-31. doi: 10.3290/j.jad.a44874.

Eldafrawy M, Ebroin MG, Gailly PA, Nguyen JF, Sadoun MJ, Mainjot AK. Bonding to CAD-CAM composites: an interfacial fracture toughness approach. J Dent Res. 2018 Jan;97(1):60-7. doi: 10.1177/0022034517728714. DOI: https://doi.org/10.1177/0022034517728714

Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent. 2014 Nov-Dec;26(6):382-93. doi: 10.1111/jerd.12100. DOI: https://doi.org/10.1111/jerd.12100

Tribst JPM, Dal Piva AMO, Penteado MM, Borges ALS, Bottino MA. Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers. Braz Oral Res. 2018 Nov;32:e118. doi: 10.1590/1807-3107bor-2018.vol32.0118. DOI: https://doi.org/10.1590/1807-3107bor-2018.vol32.0118

Downloads

Published

2022-07-07

How to Cite

1.
Cabral ACR, Vieira Junior WF, Basting RT, Turssi CP, Amaral FLB do, França FMG. Influence of restorative materials on occlusal and internal adaptation of CAD-CAM inlays. Braz. J. Oral Sci. [Internet]. 2022 Jul. 7 [cited 2023 Feb. 3];21(00):e228852. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8668852

Issue

Section

Original Research

Funding data

Most read articles by the same author(s)