Banner Portal
Use of scanning electron microscope to evaluate the marginal fit of protocol bars obtained through benchtop or intraoral digital scanners
PDF

Keywords

Dental implants
Computer-aided design

How to Cite

1.
Parizotto RA, Cavalli V, Zandoná RL, Carvalho GAP de, Franco ABG, Ramos EV, et al. Use of scanning electron microscope to evaluate the marginal fit of protocol bars obtained through benchtop or intraoral digital scanners. Braz. J. Oral Sci. [Internet]. 2022 Dec. 19 [cited 2024 Jun. 30];22(00):e239079. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8669079

Abstract

Aim: To evaluate the marginal fit of protocol bars milled from digital models obtained by conventional molding followed by bench scanning or digital molding with an intraoral scanner. Methods: Four morse-cone implants and the mini-pillars were installed in a 3D printed mandible model (master model). Digital models of the master model were obtained by (n=10): (Group A - Conventional) conventional (analog) molding of the master model followed by bench scanning or (Group B - Digital) molding of the master model with an intraoral scanner. All-on-four protocol bars were designed and milled from the digital models for both groups and screwed into the master model. Scanning electron microscopy (SEM) images from the distal, central, and mesial regions of each implant were obtained and the implant-protocol bar marginal fit was measured in an image software (Image J). The mean misfit of each region was analyzed by two-factor ANOVA, Tukey test, and Student’s t-test (0,05 = 0.05). Results: The digital approach (B) showed higher misadaptation than the conventional approach (A, p < 0.05), regardless of the region evaluated. In group A, the central region showed higher maladjustment than the mesial region (p<0.05), however, there were no differences among regions of group B (p>0.05). Conclusion: The conventional method of acquiring digital models using the bench scanner produced bars for the All-On-Four protocol with better marginal fit than the digital models obtained with an intraoral scanner.

https://doi.org/10.20396/bjos.v22i00.8669079
PDF

References

Patil R, Kadam P, Oswal C, Patil S, Jajoo S, Gachake A. A comparative analysis of the accuracy of implant master casts fabricated from two different transfer impression techniques. J Int Soc Prev Community Dent. 2016 Mar-Apr;6(2):142-8. doi: 10.4103/2231-0762.178747.

WennerbergA, Albrektsson T. Current challenges in successful rehabilitation with oral implants. J Oral Rehabil. 2011 Apr;38(4):286-94. doi: 10.1111/j.1365-2842.2010.02170.x.

Selvaraj S, Dorairaj J, Mohan J, Simon P. Comparison of implant cast accuracy of multiple implant impression technique with different splinting materials: an in vitro study. J Indian Prosthodont Soc. 2016 Apr-Jun;16(2):167-75. doi: 10.4103/0972-4052.167937.

Araújo GM, França DG, Silva Neto JP, Barbosa GA. Passivity of conventional and CAD/CAM fabricated implant frameworks. Braz Dent J. 2015 May-Jun;26(3):277-83. doi: 10.1590/0103-6440201300145.

Patzelt SB, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners: an in vitro comparative study. J Am Dent Assoc. 2014 Jun;145(6):542-51. doi: 10.14219/jada.2014.23.

Stimmelmayr M, Güth JF, Erdelt K, Happe A, Schlee M, Beuer F. Clinical study evaluating the discrepancy of two different impression techniques of four implants in an edentulous jaw. Clin Oral Investig. 2013 Nov;17(8):1929-35. doi: 10.1007/s00784-012-0885-z.

Carvalho GAP, Franco ABG, Kreve S, Ramos EV, Dias SC, Amaral FLB. Polyether ether ketone in protocol bars: mechanical behavior of three designs. J Int Oral Health. 2017 Sept;9(5):202-6. doi: 10.4103/jioh.jioh_163_17.

Gherlone E, Capparé P, Vinci R, Ferrini F, Gastaldi G, Crespi R. Conventional versus digital impressions for "all-on-four" restorations. Int J Oral Maxillofac Implants. 2016 Mar-Apr;31(2):324-30. doi: 10.11607/jomi.3900.

Markarian RA, Galles DP, Gomes França FM. Scanning electron microscopy analysis of the adaptation of single-unit screw-retained computer-aided design/computer-aided manufacture abutments after mechanical cycling. Int J Oral Maxillofac Implants. 2018;33(1):127-36. doi: 10.11607/jomi.5588.

Siadat H, Alikhasi M, Beyabanaki E, Rahimian S. Comparison of different impression techniques when using the all-on-four implant treatment protocol. Int J Prosthodont. 2016 May-Jun;29(3):265-70. doi: 10.11607/ijp.4341.

Stimmelmayr M, Beuer F, Edelhoff D, Güth JF. Implant impression techniques for the edentulous jaw: a summary of three studies. J Prosthodont. 2016 Feb;25(2):146-50. doi: 10.1111/jopr.12305.

Moreira AH, Rodrigues NF, Pinho AC, Fonseca JC, Vilaça JL. Accuracy comparison of implant impression techniques: a systematic review. Clin Implant Dent Relat Res. 2015 Oct;17 Suppl 2:e751-64. doi: 10.1111/cid.12310.

Naumovski B, Kapushevska B. Dimensional stability and acuracy of silicone - based impression materials using different impression techniques - a literature review. Pril (MakedonAkadNaukUmet Odd Med Nauki). 2017 Sep;38(2):131-8. doi: 10.1515/prilozi-2017-0031.

Simamoto-Júnior PC, Cavalcante LAL, Miura FL, Resende LM, Fernandes Neto AJ. [Evaluation of the quality of the surface prosthetic in different systems: a comparative study]. Rev Odontol Bras Central. 2015;24(71):204-8. Portuguese.

Zhou Y, Li Y, Ma X, Huang Y, Wang J. Alternative method to evaluate the adaptation of implant-supported multi-unit prosthetic frameworks. J Prosthodont. 2019 Feb;28(2):e643-e648. doi: 10.1111/jopr.12644.

Balouch F, Jalalian E, Nikkheslat M, Ghavamian R, ToopchiSh, Jallalian F, et al. Comparison of Dimensional Accuracy between Open-Tray and Closed-Tray Implant Impression Technique in 15° Angled Implants. J Dent (Shiraz). 2013 Sept;14(3):96-102.

Nakhaei M, Madani AS, Moraditalab A, Haghi HR. Three-dimensional accuracy of different impression techniques for dental implants. Dent Res J (Isfahan). 2015 Sep-Oct;12(5):431-7. doi: 10.4103/1735-3327.166190.

Kim KR, Seo KY, Kim S. Conventional open-tray impression versus intraoral digital scan for implant-level complete-arch impression. J Prosthet Dent. 2019 Dec;122(6):543-9. doi: 10.1016/j.prosdent.2018.10.018.

Alsharbaty MHM, Alikhasi M, Zarrati S, Shamshiri AR. A clinical comparative study of 3-dimensional accuracy between digital and conventional implant impression techniques. J Prosthodont. 2019 Apr;28(4):e902-8. doi: 10.1111/jopr.12764.

Huang R, Liu Y, Huang B, Zhang C, Chen Z, Li Z. Improved scanning accuracy with newly designed scan bodies: An in vitro study comparing digital versus conventional impression techniques for complete-arch implant rehabilitation. Clin Oral Implants Res. 2020 Jul;31(7):625-33. doi: 10.1111/clr.13598.

Pesce P, Pera F, Setti P, Menini M. Precision and accuracy of a digital impression scanner in full-arch implant rehabilitation. Int J Prosthodont. 2018 Mar/Apr;31(2):171-5. doi: 10.11607/ijp.5535.

Gimenez-Gonzalez B, Hassan B, Özcan M, Pradíes G. An in vitro study of factors influencing the performance of digital intraoral impressions operating on active wavefront sampling technology with multiple implants in the edentulous maxilla. J Prosthodont. 2017 Dec;26(8):650-5. doi: 10.1111/jopr.12457.

Mennito AS, Evans ZP, Lauer AW, Patel RB, Ludlow ME, Renne WG. Evaluation of the effect scan pattern has on the trueness and precision of six intraoral digital impression systems. J Esthet Restor Dent. 2018 Mar;30(2):113-8. doi: 10.1111/jerd.12371.

Saboury A, Neshandar Asli H, DaliliKajan Z. The accuracy of four impression-making techniques in angulated implants based on vertical gap. J Dent (Shiraz). 2017 Dec;18(4):289-97.

Nishioka RS, De Santis LR, De Melo Nishioka GN, Kojima AN, Souza FÁ. Strain gauge evaluation of transfer impression techniques of multiple implant-supported prosthesis. Implant Dent. 2018 Apr;27(2):188-92. doi: 10.1097/ID.0000000000000744.

Mangano A, Beretta M, Luongo G, Mangano C, Mangano F. Conventional vs digital impressions: acceptability, treatment comfort and stress among young orthodontic patients. Open Dent J. 2018 Jan;12:118-24. doi: 10.2174/1874210601812010118.

Mangano C, Luongo F, Migliario M, Mortellaro C, Mangano FG. Combining intraoral scans, cone beam computed tomography and face scans: the virtual patient. J Craniofac Surg. 2018 Nov;29(8):2241-6. doi: 10.1097/SCS.0000000000004485.

Markarian RA, da Silva RLB, Burgoa S, Pinhata-Baptista OH, No-Cortes J, Cortes ARG. Clinical relevance of digital dentistry during covid-19 outbreak: A scoped review. Braz J Oral Sci. 2021;19:e200201. doi: 10.20396/bjos.v19i00.8660201.

Morsy N, El Kateb M, Azer A, Fathalla S. Fit of zirconia fixed partial dentures fabricated from conventional impressions and digital scans: a systematic review and meta-analysis. J Prosthet Dent. 2021 Oct 22;S0022-3913(21)00496-0. doi: 10.1016/j.prosdent.2021.08.025.

Nedelcu R, Olsson P, Nyström I, Thor A. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: An in vitro descriptive comparison. BMC Oral Health. 2018 Feb;18(1):27. doi: 10.1186/s12903-018-0489-3.

Carbajal Mejía JB, Wakabayashi K, Nakamura T, Yatani H. Influence of abutment tooth geometry on the accuracy of conventional and digital methods of obtaining dental impressions. J. Prosthet. Dent. 2017 Sep;118(3):392-9. doi: 10.1016/j.prosdent.2016.10.021.

Schmidt A, Klussmann L, Wöstmann B, Schlenz MA. Accuracy of digital and conventional full-arch impressions in patients: An Update. J Clin Med. 2020 Mar;9(3):688. doi: 10.3390/jcm9030688.

Markarian RA, Vasconcelos E, Kim JH, Cortes ARG. Influence of gingival contour on marginal fit of cad-cam zirconia copings on implant stock abutments. Eur J Prosthodont Restor Dent. 2021 Feb;29(1):2-5. doi: 10.1922/EJPRD_2052Markarian04.

No-Cortes J, Son A, Ayres AP, Markarian RA, Attard NJ, Cortes ARG. Effect of varying levels of expertise on the reliability and reproducibility of the digital waxing of single crowns: A preliminary in vitro study. J Prosthet Dent. 2022 Jan;127(1):128-33. doi: 10.1016/j.prosdent.2020.10.007.

Cortes ARG. Digital versus conventional workflow in oral rehabilitations: Current status. Appl Sci 2022 Apr;12(8):3710. doi: 10.3390/app12083710.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Renes Augusto Parizotto, Vanessa Cavalli, Rafael Lacerda Zandoná, Geraldo Alberto Pinheiro de Carvalho, Aline Batista Gonçalves Franco , Elimario Venturin Ramos, Sérgio Candido Dias

Downloads

Download data is not yet available.