Banner Portal
Analysis of the biocompatibility of a biocelulose and a poly L- lactic acid membrane
PDF

Keywords

Biocompatible materials
Inflammation
Membranes
Celulose
Polyesters

How to Cite

1.
Doval Neto J, Marques RFC, Motta AC, Duek EA de R, Oliveira GJPL de, Marcantonio C. Analysis of the biocompatibility of a biocelulose and a poly L- lactic acid membrane. Braz. J. Oral Sci. [Internet]. 2022 Aug. 22 [cited 2024 Apr. 20];21(00):e220616. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8670616

Abstract

The use of selective barriers as resorbable membranes has become a routine clinical procedure for guided bone regeneration. Therefore, the production of membranes with a low inflammatory potential during their resorption process has become the goal of a considerable number of researches. Aim: The purpose of the present study was to evaluate the biocompatibility of poly (L- lactic acid) (PLLA) and biocelulose membranes (BC) inserted in the subcutaneous tissue on the dorsum of rats. Methods: Fifteen animals underwent surgical procedures for the insertion of 4 types of membranes: COL (Collagen membrane) – Control Group; BC (Biocellulose membrane); BCAg (Biocellulose membrane impregnated with Silver); PLLA (Poly (L-lactic acid) membrane). All membrane types were inserted into each animal. Animals were euthanized after 3, 7, and 15 days of the surgical procedure. Descriptive histological analyses were carried out to investigate host tissue reaction to membrane presence by assessing the anti-inflammatory process composition associated with the membrane resorption and the presence of foreign-body reaction or encapsulation. Results: The BC membranes showed a higher degree of inflammation and poor pattern of integration with the surrounding tissues than the PLLA and COL membranes. Conclusion: The PLLA and COL membranes present better biocompatibility than the BC membranes.

https://doi.org/10.20396/bjos.v21i00.8670616
PDF

References

Soldatos NK, Stylianou P, Koidou VP, Angelov N, Yukna R, Romanos GE. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017;48(2):131-47. doi: 10.3290/j.qi.a37133.

Wessing B, Lettner S, Zechner W. Guided bone regeneration with collagen membranes and particulate graft materials: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018 Jan/Feb;33(1):87-100. doi: 10.11607/jomi.5461.

Jang TS, Lee EJ, Jo JH, Jeon JM, Kim MY, Kim HE, et al. Fibrous membrane of nano-hybrid poly-L-lactic acid/silica xerogel for guided bone regeneration. J Biomed Mater Res B Appl Biomater. 2012 Feb;100(2):321-30. doi: 10.1002/jbm.b.31952.

Ikumi R, Miyahara T, Akino N, Tachikawa N, Kasugai S. Guided bone regeneration using a hydrophilic membrane made of unsintered hydroxyapatite and poly(L-lactic acid) in a rat bone-defect model. Dent Mater J. 2018 Nov;37(6):912-8. doi: 10.4012/dmj.2017-385.

Moura JM, Ferreira JF, Marques L, Holgado L, Graeff CF, Kinoshita A. Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits. J Mater Sci Mater Med. 2014 Sep;25(9):2111-20. doi: 10.1007/s10856-014-5241-1.

Sheikh Z, Qureshi J, Alshahrani AM, Nassar H, Ikeda Y, Glogauer M, et al. Collagen based barrier membranes for periodontal guided bone regeneration applications. Odontology. 2017 Jan;105(1):1-12. doi: 10.1007/s10266-016-0267-0.

Cucchi A, Vignudelli E, Napolitano A, Marchetti C, Corinaldesi G. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial. Clin Implant Dent Relat Res. 2017 Oct;19(5):821-32. doi: 10.1111/cid.12520.

Meloni SM, Jovanovic SA, Urban I, Canullo L, Pisano M, Tallarico M. Horizontal Ridge Augmentation using GBR with a Native Collagen Membrane and 1:1 Ratio of Particulated Xenograft and Autologous Bone: A 1-Year Prospective Clinical Study. Clin Implant Dent Relat Res. 2017 Feb;19(1):38-45. doi: 10.1111/cid.12429.

Cucchi A, Sartori M, Parrilli A, Aldini NN, Vignudelli E, Corinaldesi G. Histological and histomorphometric analysis of bone tissue after guided bone regeneration with non-resorbable membranes vs resorbable membranes and titanium mesh. Clin Implant Dent Relat Res. 2019 Aug;21(4):693-701. doi: 10.1111/cid.12814.

Naenni N, Berner T, Waller T, Huesler J, Hämmerle CHF, Thoma DS. Influence of wound closure on volume stability with the application of different GBR materials: an in vitro cone-beam computed tomographic study. J Periodontal Implant Sci. 2019 Feb;49(1):14-24. doi: 10.5051/jpis.2019.49.1.14.

Marques MS, Zepon KM, Petronilho FC, Soldi V, Kanis LA. Characterization of membranes based on cellulose acetate butyrate/poly(caprolactone)triol/doxycycline and their potential for guided bone regeneration application. Mater Sci Eng C Mater Biol Appl. 2017 Jul;76:365-73. doi: 10.1016/j.msec.2017.03.095.

Beisl S, Monteiro S, Santos R, Figueiredo AS, Sánchez-Loredo MG, Lemos MA, et al. Synthesis and bactericide activity of nanofiltration composite membranes - Cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolites. Water Res. 2019 Feb;149:225-31. doi: 10.1016/j.watres.2018.10.096.

Barud Hda S, de Araújo Júnior AM, Saska S, Mestieri LB, Campos JA, de Freitas RM, et al. Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evid Based Complement Alternat Med. 2013;2013:703024. doi: 10.1155/2013/703024.

Lee YJ, An SJ, Bae EB, Gwon HJ, Park JS, Jeong SI, et al. The effect of thickness of resorbable bacterial cellulose membrane on guided bone regeneration. Materials (Basel). 2017 Mar;10(3):320. doi: 10.3390/ma10030320.

Marquele-Oliveira F, da Silva Barud H, Torres EC, Machado RTA, Caetano GF, Leite MN, et al. Development, characterization and pre-clinical trials of an innovative wound healing dressing based on propolis (EPP-AF®)-containing self-microemulsifying formulation incorporated in biocellulose membranes. Int J Biol Macromol. 2019 Sep;136:570-8. doi: 10.1016/j.ijbiomac.2019.05.135.

Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, et al. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials. 2005 Dec;26(36):7564-71. doi: 10.1016/j.biomaterials.2005.05.050.

Peng W, Zheng W, Shi K, Wang W, Shao Y, Zhang D. An in vivo evaluation of PLLA/PLLA-gHA nano-composite for internal fixation of mandibular bone fractures. Biomed Mater. 2015 Nov;10(6):065007. doi: 10.1088/1748-6041/10/6/065007.

Goldberg DJ. Stimulation of collagenesis by poly-L-lactic acid (PLLA) and -glycolide polymer (PLGA)-containing absorbable suspension suture and parallel sustained clinical benefit. J Cosmet Dermatol. 2020 May;19(5):1172-8. doi: 10.1111/jocd.13371.

Zhao Q, Wang B, Liu R, Gong M, Dong M, Fang M, et al. Drug Release Behavior of Doxorubicin Hydrochloride-Loaded Poly(L-Lactic Acid)/Hydroxyapatite/Gelatin by Surface Modification of Hydroxyapatite. J Nanosci Nanotechnol. 2018 Oct;18(10):7225-30. doi: 10.1166/jnn.2018.15507.

Motta ACS, Duek EAR. [Synthesis, characterization and “ in vitro” degradation of PLLA] Polímeros

Cien Tecnol. 2006;16(1):26-32. Portuguese. doi: 10.1590/S0104-14282006000100008

Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, et al. Degradation pattern of a porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018 Jun;53(3):430-9. doi: 10.1111/jre.12530.

Rothamel D, Benner M, Fienitz T, Happe A, Kreppel M, Nickenig HJ, et al. Biodegradation pattern and tissue integration of native and cross-linked porcine collagen soft tissue augmentation matrices - an experimental study in the rat. Head Face Med. 2014 Mar;10:10. doi: 10.1186/1746-160X-10-10.

Leak K, Johnson S. Going green: using a bio-cellulose membrane for patients with chronic non-healing wounds. Br J Nurs. 2015 Nov;24 Suppl 20:S60-6. doi: 10.12968/bjon.2015.24.Sup20.S60.

Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018 May;111:923-34. doi: 10.1016/j.ijbiomac.2018.01.089.

Singla R, Soni S, Kulurkar PM, Kumari A, S M, Patial V, Padwad YS, et al. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym. 2017 Jan;155:152-62. doi: 10.1016/j.carbpol.2016.08.065.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 José Doval Neto, Rodrigo Fernando Costa Marques, Adriana Cristina Motta, Eliana Aparecida de Rezende Duek, Guilherme José Pimentel Lopes de Oliveira, Cláudio Marcantonio

Downloads

Download data is not yet available.