Effect of phenylmethylsulfonyl fluoride, a protease inhibitor, on enamel surface remineralization





Protease inhibitor, Dental enamel, Fluorides, Tooth remineralization


Phenylmethylsulfonyl fluoride (PMSF) is a protease inhibitor widely used in research, but fluoride is released during its action and this knowledge has been neglected in dental research. Aim: to evaluate if fluoride released by salivary protease action on PMSF affects enamel remineralization and fluoride uptake. Methods: Groups of 10 enamel slabs, with caries-like lesions and known surface hardness (SH), were subjected to one of the following treatment groups: Stimulated human saliva (SHS), negative control; SHS containing 1.0 μg F/mL (NaF), positive control; and SHS containing 10, 50 or 100 μM PMSF. The slabs were subjected to a pH-cycling regimen consisting of 22 h/day in each treatment solution and 2 h/day in a demineralizing solution. After 12 days, SH was again measured to calculate the percentage of surface hardness recovery (%SHR), followed by enamel fluoride uptake determination. The time-related fluoride release from 100.0 μM PMSF by SHS action was also determined. Data were analyzed by ANOVA followed by Newman-Keuls test. Results: The release of fluoride from PMSF by SHS was rapid, reaching a maximum value after 10 min. Fluoride released from PMSF was more effective in enhancing %SHR and increasing fluoride uptake in enamel compared with SHS alone (p < 0.05); furthermore, it was equivalent to the positive control (p > 0.05). Conclusion: In conclusion, fluoride released by saliva from PMSF is available to react with enamel and needs to be taken into account in research using this protease inhibitor.


Download data is not yet available.


Metrics Loading ...

Author Biographies

Paulo Edelvar Corrêa Peres, Federal University of Santa Maria

Faculty of Dentistry, Federal University of Santa Maria, Santa Maria, RS, Brazil.

Jean Fu, University of Rochester

Eastman Dental Center, University of Rochester, NY, USA.

Zero DT, Indiana University School of Dentistry

Indiana University School of Dentistry, Indianapolis, IN, USA.

Jaime Aparecido Cury, University of Campinas

Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.


Papale F, Santonocito S, Polizzi A, Giudice AL, Capodiferro S, Favia G, et al. The new era of salivaomics in dentistry: frontiers and facts in the early diagnosis and prevention of oral diseases and cancer. Metabolites. 2022 Jul;12(7):638. doi: 10.3390/metabo12070638. DOI: https://doi.org/10.3390/metabo12070638

Siqueira WL, Dawes C. The salivary proteome: challenges and perspectives. Proteomics Clin Appl. 2011 Dec;5(11-12):575-9. doi: 10.1002/prca.201100046. DOI: https://doi.org/10.1002/prca.201100046

Xiao H, Wong DT. Method development for proteome stabilization in human saliva. Anal Chim Acta. 2012 Apr;722:63-9. doi: 10.1016/j.aca.2012.02.017. DOI: https://doi.org/10.1016/j.aca.2012.02.017

Fahrney DE, Gold AM. Sulfonyl Fluorides as Inhibitor of Esterases. I. Rates of Reaction with Acetylcholinesterase, α-Chymotrypsin, and Trypsin, J Am Chem Soc. 1963;85(7):997-1000. doi: 10.1021/ja00890a037. DOI: https://doi.org/10.1021/ja00890a037

Minaguchi K, Madapallimattam G, Bennick A. The presence and origin of phosphopeptides in human saliva. Biochem J. 1988 Feb;250(1):171-7. doi: 10.1042/bj2500171. DOI: https://doi.org/10.1042/bj2500171

Nieuw Amerongen AV, Oderkerk CH, Driessen AA. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res. 1987;21(4):297-309. doi: 10.1159/000261033. DOI: https://doi.org/10.1159/000261033

Fisher SJ, Prakobphol A, Kajisa L, Murray PA. External radiolabelling of components of pellicle on human enamel and cementum. Arch Oral Biol. 1987;32(7):509-17. doi: 10.1016/s0003-9969(87)80013-4. DOI: https://doi.org/10.1016/S0003-9969(87)80013-4

Koller MM, Maeda N, Purushotham KR, Scarpace PJ, Humphreys-Beher MG. A biochemical analysis of parotid and submandibular salivary gland function with age after simultaneous stimulation with pilocarpine and isoproterenol in female NIA Fischer 344 rats. Arch Oral Biol. 1992 Mar;37(3):219-30. doi: 10.1016/0003-9969(92)90092-m. DOI: https://doi.org/10.1016/0003-9969(92)90092-M

Steinberg D, Beeman D, Bowen WH. The effect of delmopinol on glucosyltransferase adsorbed on to saliva-coated hydroxyapatite. Arch Oral Biol. 1992 Jan;37(1):33-8. doi: 10.1016/0003-9969(92)90150-7. DOI: https://doi.org/10.1016/0003-9969(92)90150-7

Stinson MW, Haraszthy GG, Zhang XL, Levine MJ. Inhibition of Porphyromonas gingivalis adhesion to Streptococcus gordonii by human submandibular-sublingual saliva. Infect Immun. 1992 Jul;60(7):2598-604. doi: 10.1128/iai.60.7.2598-2604.1992. DOI: https://doi.org/10.1128/iai.60.7.2598-2604.1992

Iontcheva I, Oppenheim FG, Troxler RF. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J Dent Res. 1997 Mar;76(3):734-43. doi: 10.1177/00220345970760030501. DOI: https://doi.org/10.1177/00220345970760030501

Bassim CW, Ambatipudi KS, Mays JW, Edwards DA, Swatkoski S, Fassil H, et al. Quantitative salivary proteomic differences in oral chronic graft-versus-host disease. J Clin Immunol. 2012 Dec;32(6):1390-9. doi: 10.1007/s10875-012-9738-4. DOI: https://doi.org/10.1007/s10875-012-9738-4

Rölla G, Melsen B. Desorption of protein and bacteria from hydroxyapatite by fluoride and monofluorophosphate. Caries Res. 1975;9(1):66-73. doi: 10.1159/000260144. DOI: https://doi.org/10.1159/000260144

Hamilton IR. Biochemical effects of fluoride on oral bacteria. J Dent Res. 1990 Feb;69 Spec No:660-7; discussion 682-3. doi: 10.1177/00220345900690S128. DOI: https://doi.org/10.1177/00220345900690S128

Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res. 2002 Mar-Apr;36(2):81-6. doi: 10.1159/000057864. DOI: https://doi.org/10.1159/000057864

Cury JA, Tenuta LM. Enamel remineralization: controlling the caries disease or treating early caries lesions? Braz Oral Res. 2009;23 Suppl 1:23-30. doi: 10.1590/s1806-83242009000500005. DOI: https://doi.org/10.1590/S1806-83242009000500005

Zero DT. In situ caries models. Adv Dent Res. 1995 Nov;9(3):214-30; discussion 231-4. doi: 10.1177/08959374950090030501. DOI: https://doi.org/10.1177/08959374950090030501

White DJ. Reactivity of fluoride dentifrices with artificial caries. I. Effects on early lesions: F uptake, surface hardening and remineralization. Caries Res. 1987;21(2):126-40. doi: 10.1159/000261013. DOI: https://doi.org/10.1159/000261013

Koo RH, Cury JA. Soluble calcium/SMFP dentifrice: effect on enamel fluoride uptake and remineralization. Am J Dent. 1998 Aug;11(4):173-6.

Fiske CM, Subarrow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925 Dec;66(2):375-400. DOI: https://doi.org/10.1016/S0021-9258(18)84756-1

Ayres M, Ayres M Jr, Ayres DL, Santos AS: BioEstat 2.0: Statistical Applications in Biological Sciences and Medicine. Belém: Sociedade Civil Mamiraua; 2000. Portuguese.

Feng Y, Li Q, Chen J, Yi P, Xu X, Fan Y, et al. Salivary protease spectrum biomarkers of oral cancer. Int J Oral Sci. 2019 Jan;11(1):7. doi: 10.1038/s41368-018-0032-z. DOI: https://doi.org/10.1038/s41368-018-0032-z

Shellis RP, Duckworth RM. Studies on the cariostatic mechanisms of fluoride. Int Dent J. 1994 Jun;44(3 Suppl 1):263-73.

Pearce EIF, Jenkins GN: The decomposition of monofluorophosphate by enzymes in whole human saliva. Arch Oral Biol 1977;22(6):405-7. doi: 10.1016/0003-9969(77)90064-4. DOI: https://doi.org/10.1016/0003-9969(77)90064-4

Bowen WH. Relative efficacy of sodium fluoride and sodium monofluorophosphate as anti-caries agents in dentifrices: Proceedings of a conference sponsored by Unilever Research, held at the Royal Society of Medicine, London, 5 November 1994. London: Royal Society of Medicine Press; 1995. 66p.

Tenuta LMA, Cury JA. Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. Monogr Oral Sci. 2013;23:108-24. doi: 10.1159/000350479. DOI: https://doi.org/10.1159/000350479




How to Cite

Peres PEC, Fu J, Zero DT, Cury JA. Effect of phenylmethylsulfonyl fluoride, a protease inhibitor, on enamel surface remineralization. Braz. J. Oral Sci. [Internet]. 2022 Nov. 3 [cited 2023 Feb. 2];22(00):e230883. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8670883



Original Research

Most read articles by the same author(s)