Banner Portal
Effect of clinical and laboratory techniques of cementation on the assessment of marginal and internal fit of prosthetic elements


Dental marginal adaptation
Computer-aided design
Dental prosthesis design

How to Cite

Pinto CC, Silva LAL da, Licurci CA de A, Canabarro A. Effect of clinical and laboratory techniques of cementation on the assessment of marginal and internal fit of prosthetic elements. Braz. J. Oral Sci. [Internet]. 2024 Jan. 29 [cited 2024 Jun. 14];23(00):e240950. Available from:


Aim: The aim of this in vitro study was to compare machine and manual cementation of prosthetic elements by measuring internal and marginal fits. Methods: Eighteen anatomic prefabricated abutments were used to manufacture zirconia copings in the Ceramill (n=9) and Lava systems (n=9). The copings were cemented with a fluid consistency addition silicone using a machine (n=18) and manually (n=18) according to the replica technique. They were then cut in the buccal-palatal and mesial-distal directions. The film thickness was photographed using an optical microscope and measured in the internal and marginal regions. The data collected were analyzed by repeated measures ANOVA and Bonferroni’s multiple comparison test (∂=.05). The Bland-Altman test was performed to evaluate the agreement between the methods. Results: In the evaluation of the internal and marginal misfits, the mean values observed for the cementation performed with the aid of a machine and manually, were as follows: angular regions, 76.7 μm and 76.2 μm; linear regions, 60.6 μm and 60.7 μm; incisal region, 144.8 μm and 145.2 μm; marginal region, 40.1 μm and 40.2 μm; and overall mean, 80.4 μm and 80.6 μm, respectively. No significant differences were found between the 2 methods, for any of regions and systems (P>.05). The Bland-Altman test showed agreement between the methods (P>.05) and that the limits of agreement found were clinically acceptable. Conclusions: Within the limitations of this in vitro study, we can conclude that cementation using manual techniques or mechanical aid produces the same cement films.


Mously HA, Finkelman M, Zandparsa R, Hirayama H. Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heat-press technique. J Prosthet Dent. 2014 Aug;112(2):249-56. doi: 10.1016/j.prosdent.2014.03.017.

McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971 Aug;131(3):107-11. doi: 10.1038/sj.bdj.4802708.

Dolev E, Bitterman Y, Meirowitz A. Comparison of marginal fit between CAD-CAM and hot-press lithium disilicate crowns. J Prosthet Dent. 2019 Jan;121(1):124-8. doi: 10.1016/j.prosdent.2018.03.035.

Zimmermann M, Valcanaia A, Neiva G, Mehl A, Fasbinder D. Digital evaluation of the fit of zirconia-reinforced lithium silicate crowns with a new three-dimensional approach. Quintessence Int. 2018;49(1):9-15. doi: 10.3290/j.qi.a39402.

Falk A, Vult von Steyern P, Fransson H, Thorén MM. Reliability of the impression replica technique. Int J Prosthodont. 2015 Mar-Apr;28(2):179-80. doi: 10.11607/ijp.4132.

Licurci CAA, Lins L, Garbossa M, Canabarro A. A comparative study between replica and cementation techniques in the evaluation of internal and marginal misfits of single crowns. J Prosthet Dent. 2022 Apr;127(4):609-16. doi: 10.1016/j.prosdent.2020.11.004.

Boitelle P, Tapie L, Mawussi B, Fromentin O. Evaluation of the marginal fit of CAD-CAM zirconia copings: Comparison of 2D and 3D measurement methods. J Prosthet Dent. 2018 Jan;119(1):75-81. doi: 10.1016/j.prosdent.2017.01.026.

Yildirim G, Uzun IH, Keles A. Evaluation of marginal and internal adaptation of hybrid and nanoceramic systems with microcomputed tomography: An in vitro study. J Prosthet Dent. 2017 Aug;118(2):200-7. doi: 10.1016/j.prosdent.2016.11.005.

Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, et al. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Prosthet Dent. 2018 Mar;119(3):384-9. doi: 10.1016/j.prosdent.2017.03.001.

Kale E, Seker E, Yilmaz B, Özcelik TB. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. J Prosthet Dent. 2016 Dec;116(6):890-5. doi: 10.1016/j.prosdent.2016.05.006.

Kois JC. The restorative-periodontal interface: biological parameters. Periodontol 2000. 1996 Jun;11:29-38. doi: 10.1111/j.1600-0757.1996.tb00180.x.

Sorensen SE, Larsen IB, Jörgensen KD. Gingival and alveolar bone reaction to marginal fit of subgingival crown margins. Scand J Dent Res. 1986 Apr;94(2):109-14. doi: 10.1111/j.1600-0722.1986.tb01373.x.

Prakki A, Cilli R, Da Costa AU, Gonçalves SE, Mondelli RF, Pereira JC. Effect of resin luting film thickness on fracture resistance of a ceramic cemented to dentin. J Prosthodont. 2007 May-Jun;16(3):172-8. doi: 10.1111/j.1532-849X.2006.00168.x.

Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, et al. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J Prosthet Dent. 2019 Apr;121(4):590-7.e3. doi: 10.1016/j.prosdent.2018.06.006.

Papadiochou S, Pissiotis AL. Marginal adaptation and CAD-CAM technology: A systematic review of restorative material and fabrication techniques. J Prosthet Dent. 2018 Apr;119(4):545-51. doi: 10.1016/j.prosdent.2017.07.001.

Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014 Nov;41(11):853-74. doi: 10.1111/joor.12205.

Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent. 2013 Dec;110(6):447-54.e10. doi: 10.1016/j.prosdent.2013.08.003.

Yildirim B. Effect of porcelain firing and cementation on the marginal fit of implant-supported metal-ceramic restorations fabricated by additive or subtractive manufacturing methods. J Prosthet Dent. 2020 Oct;124(4):476.e1-476.e6. doi: 10.1016/j.prosdent.2020.03.014.

Habib SR, Ali M, Al Hossan A, Majeed-Saidan A, Al Qahtani M. Effect of cementation, cement type and vent holes on fit of zirconia copings. Saudi Dent J. 2019 Jan;31(1):45-51. doi: 10.1016/j.sdentj.2018.09.001.

Kale E, Yilmaz B, Seker E, Özcelik TB. Effect of fabrication stages and cementation on the marginal fit of CAD-CAM monolithic zirconia crowns. J Prosthet Dent. 2017 Dec;118(6):736-41. doi: 10.1016/j.prosdent.2017.01.004.

Pattanaik BK, Nagda SJ. An evaluation of retention and marginal seating of Ni-Cr alloy cast restorations using three different luting cements: an in vitro study. Indian J Dent Res. 2012 Jan-Feb;23(1):20-5. doi: 10.4103/0970-9290.99032.

Bottino MA, Valandro LF, Buso L, Ozcan M. The influence of cervical finish line, internal relief, and cement type on the cervical adaptation of metal crowns. Quintessence Int. 2007 Jul-Aug;38(7):e425-32.

Hasanzade M, Moharrami M, Alikhasi M. How adjustment could affect internal and marginal adaptation of CAD/CAM crowns made with different materials. J Adv Prosthodont. 2020 Dec;12(6):344-50. doi: 10.4047/jap.2020.12.6.344.

Hong MH, Min BK, Lee DH, Kwon TY. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J Prosthet Dent. 2019 Nov;122(5):475-81. doi: 10.1016/j.prosdent.2019.03.002.

Homsy FR, Özcan M, Khoury M, Majzoub ZAK. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J Prosthet Dent. 2018 May;119(5):783-90. doi: 10.1016/j.prosdent.2017.07.025.

Kelvin Khng KY, Ettinger RL, Armstrong SR, Lindquist T, Gratton DG, Qian F. In vitro evaluation of the marginal integrity of CAD/CAM interim crowns. J Prosthet Dent. 2016 May;115(5):617-23. doi: 10.1016/j.prosdent.2015.10.002.

Lins L, Bemfica V, Queiroz C, Canabarro A. In vitro evaluation of the internal and marginal misfit of CAD/CAM zirconia copings. J Prosthet Dent. 2015 Mar;113(3):205-11. doi: 10.1016/j.prosdent.2014.09.010.

Colpani JT, Borba M, Della Bona A. Evaluation of marginal and internal fit of ceramic crown copings. Dent Mater. 2013 Feb;29(2):174-80. doi: 10.1016/

Piemjai M. Effect of seating force, margin design, and cement on marginal seal and retention of complete metal crowns. Int J Prosthodont. 2001 Sep-Oct;14(5):412-6.

Didomenico A, Nussbaum M. Measurement and prediction of single and multi-digit finger strength. Ergonomics. 2003 Dec;46(15):1531-48. doi: 10.1080/0014013032000121660.

Laurent M, Scheer P, Dejou J, Laborde G. Clinical evaluation of the marginal fit of cast crowns--validation of the silicone replica method. J Oral Rehabil. 2008 Feb;35(2):116-22. doi: 10.1111/j.1365-2842.2003.01203.x.

Cunali RS, Saab RC, Correr GM, Cunha LFD, Ornaghi BP, Ritter AV, et al. Marginal and internal adaptation of zirconia crowns: a comparative study of assessment methods. Braz Dent J. 2017 Jul-Aug;28(4):467-73. doi: 10.1590/0103-6440201601531.

Kocaağaoğlu H, Kılınç Hİ, Albayrak H, Kara M. In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies. J Prosthet Dent. 2016 Sep;116(3):368-74. doi: 10.1016/j.prosdent.2016.03.013.

Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989 Oct;62(4):405-8. doi: 10.1016/0022-3913(89)90170-4.

Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb;1(8476):307-10.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Carolina Chaves Pinto , Leonardo André Lins da Silva, Cristiana Almeida de Assis Licurci, Antonio Canabarro


Download data is not yet available.