Banner Portal
The peri-implant ligament
PDF

Keywords

Osseointegration
Dental implants
Biocompatible materials
Proteins

How to Cite

1.
Nascimento M do, Souza BM de, Posch AT. The peri-implant ligament : a scoping review. Braz. J. Oral Sci. [Internet]. 2023 Jan. 26 [cited 2024 Apr. 20];22(00):e231269. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8671269

Abstract

The peri-implant ligament is formed from the interface of bone tissue, through the anchoring of proteins and the surface of the dental implant. In this sense, it is relevant to understand the extent to which this ligament is structured and biomimics the periodontal ligament functions. Aim: The goal of this scoping review is to present and analyze the peri-implant ligament composition and compare the extent to which this ligament is structured and biomimics the periodontal ligament functions. Methods: This scoping review was performed according to the Joanna Briggs Institute methodology for scoping reviews and following the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for scoping review. Two independent researchers searched Pubmed, Cochrane, Embase, Virtual Health Library, Scielo, Scopus, Web of Science, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Digital Library of Theses and Dissertations from the University of São Paulo and Portal Capes. Studies published in English, Portuguese and Spanish, over the last 21 years (2000-2021). Results: A total of 330 titles were identified and after applying inclusion and exclusion factors, 27 studies were included in this review. All proteins were identified regarding their tissue function and classified into 6 major protein groups. After that this new protein ligament was compared with the periodontal ligament regarding its function and composition. The main proteins associated with osseointegration, and thus, with the peri-implant ligament are recognized as belonging to the periodontal ligament. Conclusion: This scoping review results suggest evidence of the composition and function of the periimplant ligament. However, variations may still exist due to the existence of several modulants of the osseointegration process.

https://doi.org/10.20396/bjos.v22i00.8671269
PDF

References

Nascimento M. [Cell-protein-implant interaction in the osseointegration process: cell-protein-implant interaction]. Braz J Implantol Health Sci. 2022;4(2):44-59. Portuguese. doi: 10.36557/2674-8169.2022v4n2p44-59.

Moura JVF, Nascimento M, de Souza BM, Posch AT. [The process of angiogenesis and integration in osseointegrated titanium implants]. Braz J Implantol Health Sci. 2022;4(3):18-32. Portuguese. doi: 10.36557/2674-8169.2022v4n3p18-32.

Nascimento M. Implant Planning in Patients with Periodontal Disease: A Neomodern Perspective. Open Access J Dent Oral Surg. 2022;3(1):1028. doi: 10.54026/OAJDOS/1028.

Mendes VC, Davies JE. [A new perspective in the biology of osseointegration] Rev Assoc Paul Cir Dent. 2016;70(2):166-71. Portuguese.

Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil, H. Chapter 11: Scoping reviews (2020 version). In: Aromataris E, Munn Z, editors. JBI Manual for Evidence Synthesis. 2020 [cited 2021 Mar 22]. Chapter 11. Available from: doi: 10.46658/JBIMES-20-12.

Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018 Oct;169(7):467-73. doi: 10.7326/M18-0850.

Barberi J, Spriano S. Titanium and protein adsorption: An overview of mechanisms and effects of surface features. Materials (Basel). 2021 Mar;14(7):1590. doi: 10.3390/ma14071590.

Meyer U, Joos U, Mythili J, Stamm T, Hohoff A, Fillies T, et al. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials. 2004 May;25(10):1959-67. doi: 10.1016/j.biomaterials.2003.08.070.

Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, et al. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling. 2017 Jan;33(1):98-111. doi: 10.1080/08927014.2016.1259414.

Martínez-Ibáñez M, Murthy NS, Mao Y, Suay J, Gurruchaga M, Goñi I, t al. Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. J Biomed Mater Res B Appl Biomater. 2018 Apr;106(3):1138-47. doi: 10.1002/jbm.b.33889.

Prati AJ, Casati MZ, Ribeiro FV, Cirano FR, Pastore GP, Pimentel SP, et al. Release of bone markers in immediately loaded and nonloaded dental implants: a randomized clinical trial. J Dent Res. 2013 Dec;92(12 Suppl):161S-7S. doi: 10.1177/0022034513504951.

Cei S, Karapetsa D, Aleo E, Graziani F. Protein adsorption on a laser-modified titanium implant surface. Implant Dent. 2015 Apr;24(2):134-41. doi: 10.1097/ID.0000000000000214.

Matsumoto T, Tashiro Y, Komasa S, Miyake A, Komasa Y, Okazaki J. Effects of Surface Modification on Adsorption Behavior of Cell and Protein on Titanium Surface by Using Quartz Crystal Microbalance System. Materials (Basel). 2020 Dec;14(1):97. doi: 10.3390/ma14010097.

Parisi L, Ghezzi B, Bianchi MG, Toffoli A, Rossi F, Bussolati O, et al. Titanium dental implants hydrophilicity promotes preferential serum fibronectin over albumin competitive adsorption modulating early cell response. Mater Sci Eng C Mater Biol Appl. 2020 Dec;117:111307. doi: 10.1016/j.msec.2020.111307.

Wu L, Dong Y, Yao L, Liu C, Al-Bishari AM, Yie KHR, et al. Nanoporous tantalum coated zirconia implant improves osseointegration. Ceramics Int. 2020;46(11, Part A):17437-48. doi: 10.1016/j.ceramint.2020.04.038.

Parisi L, Toffoli A, Cutrera M, Bianchi MG, Lumetti S, Bussolati O, et al. Plasma Proteins at the Interface of Dental Implants Modulate Osteoblasts Focal Adhesions Expression and Cytoskeleton Organization. Nanomaterials (Basel). 2019 Oct;9(10):1407. doi: 10.3390/nano9101407.

Dayan A, Lamed R, Benayahu D, Fleminger G. RGD-modified dihydrolipoamide dehydrogenase as a molecular bridge for enhancing the adhesion of bone forming cells to titanium dioxide implant surfaces. J Biomed Mater Res A. 2019 Mar;107(3):545-51. doi: 10.1002/jbm.a.36570.

Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P. Impact of nanotechnology on dental implants. In: Subramani K, Lavenus S, editors. Emerging nanotechnologies in dentistry. 2. ed. Elsevier; 2018. Chapter 5. p:83-97. doi: 10.1016/B978-0-12-812291-4.00005-4.

Boyan BD, Lotz EM, Schwartz Z. * Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties. Tissue Eng Part A. 2017 Dec;23(23-24):1479-89. doi: 10.1089/ten.TEA.2017.0048.

Cho YD, Kim SJ, Bae HS, Yoon WJ, Kim KH, Ryoo HM, et al. Biomimetic Approach to Stimulate Osteogenesis on Titanium Implant Surfaces Using Fibronectin Derived Oligopeptide. Curr Pharm Des. 2016;22(30):4729-35. doi: 10.2174/1381612822666160203143053.

Chen C, Li H, Kong X, Zhang SM, Lee IS. Immobilizing osteogenic growth peptide with and without fibronectin on a titanium surface: effects of loading methods on mesenchymal stem cell differentiation. Int J Nanomedicine. 2014 Dec 31;10:283-95. doi: 10.2147/IJN.S74746.

Lee JH, Ogawa T. The biological aging of titanium implants. Implant Dent. 2012 Oct;21(5):415-21. doi: 10.1097/ID.0b013e31826a51f4.

Hori N, Ueno T, Minamikawa H, Iwasa F, Yoshino F, Kimoto K, et al. Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater. 2010 Oct;6(10):4175-80. doi: 10.1016/j.actbio.2010.05.006.

Lavenus S, Ricquier JC, Louarn G, Layrolle P. Cell interaction with nanopatterned surface of implants. Nanomedicine (Lond). 2010 Aug;5(6):937-47. doi: 10.2217/nnm.10.54.

Hori N, Att W, Ueno T, Sato N, Yamada M, Saruwatari L, et al. Age-dependent degradation of the protein adsorption capacity of titanium. J Dent Res. 2009 Jul;88(7):663-7. doi: 10.1177/0022034509339567.

Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F. Surface characteristics of dental implants: A review. Dent Mater. 2018 Jan;34(1):40-57. doi: 10.1016/j.dental.2017.09.007.

Broggini N, Tosatti S, Ferguson SJ, Schuler M, Textor M, Bornstein MM, et al. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)- and heparin (KRSR)-binding peptides. J Biomed Mater Res A. 2012 Mar;100(3):703-11. doi: 10.1002/jbm.a.34004.

Jaiswal S, Dubey A, Haldar S, Roy P, Lahiri D. Differential in vitro degradation and protein adhesion behaviour of spark plasma sintering fabricated magnesium-based temporary orthopaedic implant in serum and simulated body fluid. Biomed Mater. 2019 Dec;15(1):015006. doi: 10.1088/1748-605X/ab4f8b.

Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res A. 2015 Aug;103(8):2661-72. doi: 10.1002/jbm.a.35401.

Rapuano BE, Lee JJ, MacDonald DE. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to α(5) β(1) integrins in osteoblasts. Eur J Oral Sci. 2012 Jun;120(3):185-94. doi: 10.1111/j.1600-0722.2012.954.x.

Petrie TA, Reyes CD, Burns KL, García AJ. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J Cell Mol Med. 2009 Aug;13(8B):2602-12. doi: 10.1111/j.1582-4934.2008.00476.x.

Salvoni AD. [Analysis of the expression of integrinas in cells OsA-CL cultivated on treat titanium implantations to the laser] [thesis]. São Paulo: School of Dentistry, University of São Paulo; 2006. [cited 2022 Jan 10 ] Available from: http://www.teses.usp.br/teses/disponiveis/23/23141/tde-08052006-114723. Portuguese.

Wei CX, Burrow MF, Botelho MG, Lam H, Leung WK. In vitro salivary protein adsorption profile on titanium and ceramic surfaces and the corresponding putative immunological implications. Int J Mol Sci. 2020 Apr;21(9):3083. doi: 10.3390/ijms21093083.

Ho SP, Kurylo MP, Fong TK, Lee SS, Wagner HD, Ryder MI, et al. The biomechanical characteristics of the bone-periodontal ligament-cementum complex. Biomaterials. 2010 Sep;31(25):6635-46. doi: 10.1016/j.biomaterials.2010.05.024.

Jiang N, Guo W, Chen M, Zheng Y, Zhou J, Kim SG, et al. Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Front Oral Biol. 2016;18:1-8. doi: 10.1159/000351894.

Juneja P, Munjal A, Hubbard JB. Anatomy, Joints. 2022 Jul 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan.

Goodsell D. Molecule of the Mouth: Integrin. Protein Data Bank; 2011. doi: 10.2210/rcsb_pdb/mom_2011_2.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Marvin do Nascimento, Bruno Martins de Souza, Aline Tany Posch

Downloads

Download data is not yet available.