Banner Portal
Histomorphometric comparison of two different preclinical models to evaluate the bone repair in grafted areas
PDF

Keywords

Animal experimentation
Bone regeneration
Bone substitutes
Histology

How to Cite

1.
Lima JR, Soares PBF, Pereira L de SG, Rodríguez Perdomo L, Pigossi SC, Oliveira GJPL de. Histomorphometric comparison of two different preclinical models to evaluate the bone repair in grafted areas. Braz. J. Oral Sci. [Internet]. 2024 Jun. 3 [cited 2024 Jul. 17];23(00):e243937. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8673937

Abstract

Aim: This study was performed to compare two different rat defect models (critical calvaria defects versus guided bone regeneration in the mandibular ramus) used to evaluate bone repair in grafted areas. Methods: A total of 12 rats were allocated in two groups according the experimental model used to evaluate the bone repair in grafted areas: a critical sized-calvaria defect of 5 mm filled with bone graft (n=6) and a mandibular ramus filled with the bone graft associated with a Teflon dome-shaped membrane (n=6). Both groups were grafted with deproteinized bovine bone graft. After 60 days, the animals were euthanized and the samples obtained were submitted to histomorphometry analysis to evaluate the relative amount of bone, remaining bone substitute, and soft tissue within the grafted areas. Results: No differences were observed between the preclinical models evaluated in relation to the amount of bone tissue formation (19.93 ± 4.55% in calvaria vs. 21.00 ± 8.20% in mandible). However, there was a smaller amount of soft tissue (43.20 ± 10.97% vs. 57.79 ± 7.61 %; p<0.01) and a greater amount of bone substitute remaining (35.80 ± 5.52% vs. 22.28 ± 4.36 %; p<0.05) in the grafted areas in the mandible compared to calvaria defect. Conclusion: Preclinical models for the analysis of bone repair in grafted areas in the mandible and critical sized-calvaria defects showed different responses in relation to the amount of soft tissue and bone substitute remnants.

https://doi.org/10.20396/bjos.v23i00.8673937
PDF

References

Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012 Jan;8(3):133-43. doi: 10.1038/nrrheum.2012.1.

Sculean A, Stavropoulos A, Bosshardt DD. Self-regenerative capacity of intra-oral bone defects. J Clin Periodontol. 2019 Jun;46 Suppl 21:70-81. doi: 10.1111/jcpe.13075.

Grubor P, Milicevic S, Grubor M, Meccariello L. Treatment of bone defects in war wounds: retrospective study. Med Arch. 2015 Aug;69(4):260-4. doi: 10.5455/medarh.2015.69.260-264.

Chang EI, Hanasono MM. State-of-the-art reconstruction of midface and facial deformities. J Surg Oncol. 2016 Jun;113(8):962-70. doi: 10.1002/jso.24150.

Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020 Sep;113:23-41. doi: 10.1016/j.actbio.2020.06.022.

Valtanen RS, Yang YP, Gurtner GC, Maloney WJ, Lowenberg DW. Synthetic and bone tissue engineering graft substitutes: What is the future? Injury. 2021 Jun;52 Suppl 2:S72-S77. doi: 10.1016/j.injury.2020.07.040.

Busch A, Wegner A, Haversath M, Jäger M. Bone substitutes in orthopaedic surgery: current status and future perspectives. Z Orthop Unfall. 2021 Jun;159(3):304-13. doi: 10.1055/a-1073-8473.

Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol. 2014 Summer;7 Suppl 2:S203-17.

Pang KM, Um IW, Kim YK, Woo JM, Kim SM, Lee JH. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone. Clin Oral Implants Res. 2017 Jul;28(7):809-15. doi: 10.1111/clr.12885.

Oh JS, Seo YS, Lee GJ, You JS, Kim SG. A comparative study with biphasic calcium phosphate to deproteinized bovine bone in maxillary sinus augmentation: a prospective randomized and controlled clinical trial. Int J Oral Maxillofac Implants. 2019;34(1):233-42. doi: 10.11607/jomi.7116.

Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res. 2015 Jun;56(3):175-94. doi: 10.3109/03008207.2015.1027341.

Batool F, Strub M, Petit C, Bugueno IM, Bornert F, Clauss F, et al. Periodontal tissues, maxillary jaw bone, and tooth regeneration approaches: from animal models analyses to clinical applications. Nanomaterials (Basel). 2018 May 16;8(5):337. doi: 10.3390/nano8050337.

Donos N, Dereka X, Mardas N. Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol 2000. 2015 Jun;68(1):99-121. doi: 10.1111/prd.12077.

Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012 Oct;7(10):1918-29. doi: 10.1038/nprot.2012.113.

Vajgel A, Mardas N, Farias BC, Petrie A, Cimões R, Donos N. A systematic review on the critical size defect model. Clin Oral Implants Res. 2014 Aug;25(8):879-93. doi: 10.1111/clr.12194.

Stavropoulos A, Sculean A, Bosshardt DD, Buser D, Klinge B. Pre-clinical in vivo models for the screening of bone biomaterials for oral/craniofacial indications: focus on small-animal models. Periodontol 2000. 2015 Jun;68(1):55-65. doi: 10.1111/prd.12065.

de Oliveira GJPL, Aroni MAT, Medeiros MC, Marcantonio E Jr, Marcantonio RAC. Effect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. In vivo study in rats. Lasers Surg Med. 2018 Aug;50(6):651-60. doi: 10.1002/lsm.22787.

Aroni MAT, de Oliveira GJPL, Spolidório LC, Andersen OZ, Foss M, Marcantonio RAC, et al. Loading deproteinized bovine bone with strontium enhances bone regeneration in rat calvarial critical size defects. Clin Oral Investig. 2019 Apr;23(4):1605-14. doi: 10.1007/s00784-018-2588-6.

Chappuis V, Rahman L, Buser R, Janner SFM, Belser UC, Buser D. Effectiveness of contour augmentation with guided bone regeneration: 10-year results. J Dent Res. 2018 Mar;97(3):266-74. doi: 10.1177/0022034517737755.

Benic GI, Eisner BM, Jung RE, Basler T, Schneider D, Hämmerle CHF. Hard tissue changes after guided bone regeneration of peri-implant defects comparing block versus particulate bone substitutes: 6-month results of a randomized controlled clinical trial. Clin Oral Implants Res. 2019 Oct;30(10):1016-26. doi: 10.1111/clr.13515.

Pinotti FE, Pimentel Lopes de Oliveira GJ, Scardueli CR, Costa de Medeiros M, Stavropoulos A, Chiérici Marcantonio RA. Use of a non-crosslinked collagen membrane during guided bone regeneration does not interfere with the bone regenerative capacity of the periosteum. J Oral Maxillofac Surg. 2018 Nov;76(11):2331.e1-2331.e10. doi: 10.1016/j.joms.2018.07.004.

Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg. 2001 Feb;30(1):58-62. doi: 10.1054/ijom.2000.0011.

Mardas N, Kostopoulos L, Karring T. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat. J Craniofac Surg. 2002 May;13(3):453-62; discussion 462-4. doi: 10.1097/00001665-200205000-00017.

Fountain S, Windolf M, Henkel J, Tavakoli A, Schuetz MA, Hutmacher DW, et al. Monitoring healing progression and characterizing the mechanical environment in preclinical models for bone tissue engineering. Tissue Eng Part B Rev. 2016 Feb;22(1):47-57. doi: 10.1089/ten.TEB.2015.0123.

Zeiter S, Koschitzki K, Alini M, Jakob F, Rudert M, Herrmann M. Evaluation of preclinical models for the testing of bone tissue-engineered constructs. Tissue Eng Part C Methods. 2020 Feb;26(2):107-17. doi: 10.1089/ten.TEC.2019.0213.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Julia Raulino Lima, Priscilla Barbosa Ferreira Soares, Lucas de Souza Goulart Pereira , Leidys Rodríguez Perdomo, Suzane Cristina Pigossi, Guilherme José Pimentel Lopes de Oliveira

Downloads

Download data is not yet available.