Banner Portal
Microbially induced calcite precipitation in repair mortars
PDF (Português (Brasil))

Keywords

Biocementation
Microbial activity
Self renegeration

How to Cite

Damasceno, M. M. G., Costa, H. N., Silva, T. F., & Franca, R. M. (2023). Microbially induced calcite precipitation in repair mortars: an integrative literature review. Labor E Engenho, 17(00), e023021. https://doi.org/10.20396/labore.v17i00.8673375

Abstract

The application of biotechnologies in cementitious materials represents an opportunity for innovation and sustainability in the civil construction industry. Obtaining repair mortars using the Microbially Induced Calcite Precipitation (MICP) method is one of the main prospects on this topic. However, this approach is still not propagated, as it is a recent and developing thematic. Therefore, this article has the purpose of realizing an integrative literature review on the MICP method in repair mortars. After identifying the theme, the methodological sequence began with the establishment of search and sampling criteria, followed by the definition of the information of interest, critical evaluation of the selected studies and interpretation and presentation of results. The main methods identified were: external repair, with more frequent use and consistent results; and internal (self-regeneration). It was verified that there is a tendency to increase the strength pressure and decrease the water permeability of mortars treated with MICP. In addition, the formation of calcium carbonate by biological agents acts as a fissure repairer. Finally, it was identified that the greatest difficulty reported in the literature is related to the high complexity of biological processes since it involves various environmental factors. However, the technique shows promise and its development adds innovation and low environmental impact.

https://doi.org/10.20396/labore.v17i00.8673375
PDF (Português (Brasil))

References

Abo-El-Enein, S. A., Ali, A. H., Talkhan, F. N., & Abdel-Gawwad, H. A. (2012). Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 8(3), 185-192. https://doi.org/10.1016/j.hbrcj.2013.02.001

Abo-El-Enein, S. A., Ali, A. H., Talkhan, F. N., & Abdel-Gawwad, H. A. (2013). Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. HBRC Journal, 9(1), 36-40. https://doi.org/10.1016/j.hbrcj.2012.10.004

Al-Salloum, Y. et al. (2017). Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation – A review. Construction and Building Materials, v. 154, pp. 857-876.

Aimi, M. A. R. M., Hamidah, M. S., Kartini, K., Hana, H. N., Khalilah, A. K., & Schlangen, E. (2021). Development of autonomous-healing mortar using Geobacillus stearothermophilus. ACI Materials Journal, 118(1), 3-11. https://doi.org/10.14359/51700895.

Anbu, P., Kang, C. H.; Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, v. 5, p. 250.

Associação Brasileira de Normas Técnicas – ABNT (2005). NBR 13281: Argamassa para assentamento e revestimento de paredes e tetos – requisitos. Rio de Janeiro: ABNT.

Bergh, J. M. van der, Miljević, B., Šovljanski, O., Vučetić, S., Markov, S., Ranogajec, J., & Bras, A. (2020). Preliminary approach to bio-based surface healing of structural repair cement mortars. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118557

Bergh, J. M. V., Miljević, B., Vučetić, S., Šovljanski, O., Markov, S., Riley, M., Ranogajec, J., & Bras, A. (2021). Comparison of microbially induced healing solutions for crack repairs of cement-based infrastructure. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084287

Bhaduri, S., Debnath, N., Mitra, S., Liu, Y., & Kumar, A. (2016). Microbiologically induced calcite precipitation mediated by sporosarcina pasteurii. Journal of Visualized Experiments, 2016(110). https://doi.org/10.3791/53253.

Bergh, J. M., Miljević, B., Vučetić, S., Šovljanski, O., Markov, S., Riley, M., Ranogajec, J., & Bras, A. (2021). Comparison of microbially induced healing solutions for crack repairs of cement-based infrastructure. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084287

Castanier, S., Métayer-levrel, G., & Perthuisot, J. P. (1999). Carbonates precipitation and limestone genesis – the microbiogeologist point of view. Sedimentary Geology, 126(1).

Chen, B., Du, L., Yuan, J., Sun, X., Pathirage, M., Sun, W., & Feng, J. (2022). An Experimental Study on Engineered Cementitious Composites (ECC) Incorporated with Sporosarcina pasteurii. Buildings, 12(5). https://doi.org/10.3390/buildings12050691

Chen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107, 100-111. https://doi.org/10.1016/j.procbio.2021.05.001

Choi, S. G. et al. (2017, 5 jun.) Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 5(6), 5183-5190.

Chuo, S. C., Mohamed, S. F., Setapar, S. H. M., Ahmad, A., Jawaid, M., Wani, W. A., Yaqoob, A. A., & Ibrahim, M. N. M. (2020). Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation. Materials, 13(21), 1-28). MDPI AG. https://doi.org/10.3390/ma13214993

Cuzman, O. A., Richter, K., Wittig, L., & Tiano, P. (2015). Alternative nutrient sources for biotechnological use of Sporosarcina pasteurii. World Journal of Microbiology and Biotechnology, 31(6), 897-906. https://doi.org/10.1007/s11274-015-1844-z

Dadda, A., Emeriault, F., Geindreau, C., Esnault-Filet, A., & Garandet, A. (2019). Amélioration des propriétés mécaniques des sols par biocimentation: étude mécanique et microstructurale. Revue Française de Géotechnique, 160, 4. https://doi.org/10.1051/geotech/2020008

Damasceno, M. M., Costa, H. N., & Franca, R. M. (2022). Método de precipitação de calcita induzida microbianamente em argamassa de reparo. In: Meio Ambiente e Sustentabilidade: pesquisa, reflexões e diálogos emergentes, 3a ed., Editora Amplla, 2022. DOI: 10.51859/amplla.mas2407-21

Deepak, H., Joy, S., & Vasugi, V. (2016). Repair Mortar for Structural Sustainability. Disponível em: https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2016/Issue-25/Article31.pdf

Dejong, J. T. et al. (2009). Upscaling de biomediate melhoria do solo. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egito, 2009.

Dhami, N. K., Reddy, S. M., & Mukherjee, A. (2012). Biofilm and microbial applications in biomineralized concrete. In: (Ed.). Advanced topics in Biomineralization: InTech, 2012.

Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol, v.4, a.314, pp.01-13

Farrugia, C., Borg, R. P., Ferrara, L., & Buhagiar, J. (2019). The application of Lysinibacillus sphaericus for surface treatment and crack healing in mortar. Frontiers in Built Environment, 5. https://doi.org/10.3389/fbuil.2019.00062

Fouladi, A. S., Arulrajah, A., Chu, J., & Pibulsuk, S. H. (2023). Application of microbially induced calcite precipitation (MICP) technology in construction materials: a comprehensive review of waste stream contributions. Construction and Building Materials, v. 388, 131546.

Fu, Q., Wu, Y., Liu, S., Lu, L., & Wang, J. (2022). The adaptability of Sporosarcina pasteurii in marine environments and the feasibility of its application in mortar crack repair. Construction and Building Materials, 332. https://doi.org/10.1016/j.conbuildmat.2022.127371

Garbin, G. R. (2016). Estudo de biocimentação em solo arenoso. Trabalho de Conclusão de Curso (Engenharia Civil). Faculdade de Engenharia e Arquitetura, Universidade de Passo Fundo, Passo Fundo, RS, Brasil.

Gebru, A. K., Gebremicael, T. & Gebretinsae, K. H. (2021). Bio-cement production usingmicrobially induced calcite precipitation (MICP) method : A review. Chemical Engineering Science, v. 238, p. 116610.

Gomes, S., Pacheco Torgal, F., & Camões de Azevedo, A. (2013). Análise de desenvolvimentosno domínio dos materiais de construção auto-reparadores. Engenharia Civil (UM), n.47, pp. 19-30.

Hamed Khodadadi, T., KAvazanjian, E., Van Paassen, L. & Dejong, J. (2017). Bio-Grout Materials: A Review. In: Grouting 2017, pp.1-12.

Hammes, F. E. & Verstraete, W. (2002). Key roles and calcium metabolism in microbial carbonate precipitation. Environmental Science & Bio/Technology, v.1, pp. 3-7.

Intarasoontron, J., Pungrasmi, W., Nuaklong, P., Jongvivatsakul, P., & Likitlersuang, S. (2021). Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Construction and Building Materials, 302. https://doi.org/10.1016/j.conbuildmat.2021.124227

Ivanov, V., & Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology, 7(2), 139-153.

Ivanov, V., Chu, J., & Stabnikov, V. (2015). Basics of construction microbial biotechnology. Biotechnologies and Biomimetics for Civil Engineering, 2015, pp. 21-56.

Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W., & Likitlersuang, S. (2019). Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Construction and Building Materials, 212, 737-744. https://doi.org/10.1016/j.conbuildmat.2019.04.035

Jiang, N. J., Wang, Y., Chu, J., Kawasaki, S., Tang, C., Cheng, L., Du, Y., Shashank, B. S., Singh, D. N., Han, X. & Wang, Y. (2022). Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications. Soil Use Manag., 38 (1), pp. 68-93, 10.1111/SUM.12736

Jonkers, H. M., & Schlangen, E. (2008). Development of a bacteria-based self healing concrete. London: Taylor & Francis Group, ISBN 978-0-415-47535-8, 2008.

Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, v. 13, pp. 59-67.

Kulkarni, P. B., Nemade, P. D., & Wagh, M. P. (2020). Healing of generated cracks in cement mortar using MICP. Civil Engineering Journal (Iran), 6(4), 679-692. https://doi.org/10.28991/cej-2020-03091500.

Leeprasert, L., Chonudomkul, D., & Boonmak, C. (2022). Biocalcifying Potential of Ureolytic Bacteria Isolated from Soil for Biocementation and Material Crack Repair. Microorganisms, 10(5). https://doi.org/10.3390/microorganisms10050963

Lee, Y. N. (2003). Calcite Prodution by Bacillus amyloliquefacies CMB01. Journal of Microbiology.

Li, E., Du, W., Zhuang, R., Ba, M., Yuan, L., Zhang, Q., & Zhang, Y. (2022). Preparation and Characterization of Electromagnetic-Induced Rupture Microcapsules for Self-Repairing Mortars. Materials, 15(10). https://doi.org/10.3390/ma15103608

Liu, S., Yu, J., Peng, X., Cai, Y., & Tu, B. (2020). Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118611

Mangat, P. S., Abubakri, S., Grigoriadis, K., & Starinieri, V. (2021). Hydration and Microwave Curing Temperature Interactions of Repair Mortars. Recent Progress in Materials, 03(04), 1-1. https://doi.org/10.21926/rpm.2104040.

Mendes, K. D. S., Silveira, R. C. C. P. & Galvão, C. M. (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & Contexto Enfermagem, 17(4), 758-64.

Montoya, B. M. (2012). Bio-mediated soil improvement and the effect of cementation on the behavior, improvement, and performance of sand. California, Tese. 252 p. Programa de Pós-graduação em Engenharia Civil e Ambiental. University of California. 2012.

Mujah, D., Shahin, M. A. & Cheng, L. (2016). State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. Geomicrobiology Journal, 34(6), 524-537.

Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, v. 36, pp. 118-136.

Murugan, R., Suraishkumar, G. K., Mukherjee, A., & Dhami, N. K. (2021). Influence of native ureolytic microbial community on biocementation potential of Sporosarcina pasteurii. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00315-5

Nagy, B., & Kustermann, A. (2023). Rehabilitation of Porous Building Components and Masonry by MICP Injection Method. Buildings,13(5), 1273. https://doi.org/10.3390/buildings13051273

Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7). https://doi.org/10.1016/j.heliyon.2022.e09879

NBR 13281: Argamassa para assentamento e revestimento de paredes e tetos – requisitos. Rio de Janeiro, 2005.

Omoregie, A. I., Ginjom, I., & Nissom, P. (2018). Microbially Induced Carbonate Precipitation Via Ureolysis Process: A Mini-Review. Transactions on Science and Technology, 5(4), 245-256.

Pacheco, V. L. et al. (2022). Microbially Induced Calcite Precipitation (MICP): Review from an Engineering Perspective. v.1 pp. 2379-2396.

Reis, L., Rodrigues, A., Soares, R., Araújo, R., & Vieira, J. (2017). Bioprecipitação de carbonato de cálcio por bactérias ureolíticas e suas aplicações, v.14, pp. 860-881.

Rollankanti, R. C., & Srinivasu, K. (2022). Effect of Microbially Induced Calcium Carbonate Precipitation (MICP) method on the Enhancement of Infrastructure Durability and Sustainability – A state of the art review. Materials Today: Proceedings, v. 65, pp. 1608-1613.

Saha, P., & Sikder, A. (2019). Effect of Bacteria on Performance of Concrete/Mortar: A Review Sustainable Material View project. In: International Journal of Recent Technology and Engineering (IJRTE) (Issue 7). https://www.researchgate.net/publication/334626974.

Srinivas M, K., Alengaram, U. J., Ibrahim, S., Phang, S. M., Vello, V., Jun, H. K., & Alnahhal, A. M. (2021). Evaluation of crack healing potential of cement mortar incorporated with blue-green microalgae. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.102958

Stocks-Fischer S., Galinat, J. K., & Bang, S. S. (1999). Precipitação microbiológica de CaCO3. Solo Biol Biochem, v.31, pp.1563-1571.

Sun, X., Chen, J., Lu, S., Liu, M., Chen, S., Nan, Y., Wang, Y., & Feng, J. (2021). Ureolytic MICP-based self-healing mortar under artificial seawater incubation. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13094834

Yang, Z., & Cheng, X. (2013). A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures. Construction and Building Materials, 41, 505-515. https://doi.org/10.1016/j.conbuildmat.2012.12.055

Yu, X., Chu, J., Wu, S., & Wang, K. (2023). Production of biocement using steel slag. Construction and Building Materials, v.383, 2023.

Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N., & Shen, D. (2017). Review os ground improvement using microbial induced carbonate precipitation (MICP). Marine Georesources & Geotechnology, 35(8), 1135-1146.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Marcella Maria Gomes Damasceno, Heloina Nogueira da Costa, Thiago Fernandes da Silva, Raimunda Moreira da Franca

Downloads

Download data is not yet available.