Banner Portal
Climatological statistics for the “Norte Pioneiro” region of the Parana state [Brazil]
PDF (Português (Brasil))

Keywords

Coffee growing
Geographical indication
Climate change
Agroforestry systems
Brazil

How to Cite

Torres, G. A. L., Greco, R., Coltri, P. P., & Pascoalino, A. (2023). Climatological statistics for the “Norte Pioneiro” region of the Parana state [Brazil]: implications for specialty coffees and solutions in climate-smart agriculture. Labor E Engenho, 17(00), e023008. https://doi.org/10.20396/labore.v17i00.8672816

Abstract

Brazilian coffee production in recent years has shown greater focus on the production of quality coffee. The change is accompanied by protocols for the quality control of the beverage, as well as environmental preservation and sustainable agricultural management. Permeating these guidelines, are climate change scenarios and their consequences that can cause damage to the quantity and quality of the coffee produced. The present study aims to analyze trends in temperatures and precipitation from 1990 to 2020 for municipalities in the coffee producing region with Geographical Indication of Origin of the Norte Pioneiro of the state of Paraná - Brazil. For that, the statistical tests of Mann-Kendall and later the test of Pettitt were carried through. The tests indicated a tendency for an increase in temperatures and a decrease in precipitation, with significant differences when comparing the data before and after the year of break in the homogeneity of the series, reaching 2.3°C for the maximum daily average temperature, 0.7°C for the daily average minimum temperature and 0.5 mm for the daily average precipitation. From the evidence of changes in climatic parameters, a bibliographic review was carried out on Climate-Smart Agriculture with a focus on works with proposals for adaptation to climate change. The review showed greater use of technology in the coffee production chain in recent years, with an emphasis on quality control. However, most studies report agroforestry systems as one of the most promising ways of maintaining product quality in line with the adaptation of coffee farming to climate change.

https://doi.org/10.20396/labore.v17i00.8672816
PDF (Português (Brasil))

References

Alfonsi, W. M. V. et al. (2019). Geographical distribution of the incubation period of coffee leaf rust in climate change scenarios. Pesquisa Agropecuaria Brasileira, v. 54, p. e00273.

Alves, H. M. R. et al. (2011). Características ambientais e qualidade da bebida dos cafés do estado de Minas Gerais. Informe Agropecuário, v. 32, n. 261, pp. 1-12.

Anhar, A. et al. (2021). Sustainable Arabica coffee development strategies in Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, v. 667, p. 012106.

Assad, E.D., Evangelista, B.A., Silva, F.M.A., & Lopes, T.S.S. (2000). Zoneamento climático da cultura do café (Coffea arabica) para o sudoeste do Estado da Bahia. Comunicado Técnico EMBRAPA, v. 36, pp. 1-6.

Assad, E. D., Pinto, H. S., Zullo Júnior., J., & Ávila, A. M. H. (2004). Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesquisa Agropecuária Brasileira, v. 39, n. 11, pp. 1057-1064.

Ayoade, J. O. (2010). Introdução à Climatologia para os Trópicos (13a. ed., 179p.). Rio de Janeiro: Bertrand Brasil.

Bardin-Camparotto, L., Blain, G. C., & Pantano, A. P. (2018). Índice climático de qualidade para cafés naturais do tipo arábica. Agrometeoros, v. 26, pp. 257-266.

Bessada, S. M. F. et al. (2018). Coffea canephora silverskin from different geographical origins: A comparative study. Science of the Total Environment, v. 645, pp. 1021-1028.

BSCA – Brazilian Specialty Coffee Association. (2019). BSCA Atualiza Mapa das Origens Produtoras de Café no Brasil. Disponível em: <https://brazilcoffeenation.com.br/Not%C3%ADcias/BSCA-atualiza-mapa-origens-produtoras-cafe-brasil>.

Camargo, M. B. P. (2010). The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, v. 69, pp. 239-247.

Carvalho, A. L de., Santos, D. V., Marengo, J. A., Coutinho, S. M. V., & Maia, S. M. F. (2020). Impacts of extreme climate events on Brazilian agricultural production. Sustentabilidade em Debate, v. 11, pp. 197-224.

Clark, L. F., & Kerr, W. A. (2017). Climate change and terroir: The challenge of adapting geographical indications. J World Intellect Prop. v. 20, pp. 88-102.

Coltri, P. P., Lima, P. R., Koga-Vicente, A., & Gonçalves, R. R. do V. (2019). Coffee land cover changes analyses: a study case in São Paulo state. Coffee Science, v. 14, pp. 131-137.

Coltri, P. P. et al. (2015). Empirical models to predict LAI and aboveground biomass of Coffea arabica under full sun and shaded plantation: a case study of South of Minas Gerais, Brazil. Agroforest Systems. v. 89, pp. 621-636.

Coltri, P. P., Zullo Júnior, J., Gonçalves, R. R. do. V., Romani, V. L. A. S., & Pinto, H. S. (2013). Coffee Crop's Biomass and Carbon Stock Estimation With Usage of High Resolution Satellites Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 6, pp. 1786-1795.

Coltri, P. P., Pinto, H. S., Gonçalves, R. R. do. V., Zullo Junior, J., & Dubreuil, V. (2019). Low levels of shade and climate change adaptation of Arabica coffee in southeastern Brazil. Heliyon, v.5, p. E01263.

Coffee & climate (2015). Climate Change Adaptation in Coffee Production: A step-by-step guide to supporting coffee farmers in adapting to climate change Produced by the initiative. Disponível em: .

Da Matta, F. M. (2004). Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Brazilian Journal of Plant Physiology, v. 16, pp. 1-6.

Djufry, F., & Wulandari, S. (2021). Climate-smart agriculture implementation facing climate variability and uncertainty in the coffee farming system. IOP Conference Series: Earth and Environmental Science, v. 653, p. 012116.

Fagan, E. B. et al. (2011). Efeito do tempo de formação do grão de café (Coffea sp) na qualidade da bebida. Bioscience Journal, v. 27, pp. 729-738.

FAO – Food and Agriculture Organization of the United Nations (2019). Countries by Commodity in 2020. Disponível em: <http://www.fao.org/faostat/en/#rankings/countries_by_commodity_exports>.

FAO – Food and Agriculture Organization of the United Nations (2013). Climate Smart Agriculture sourcebook.

Grüter, R. et al. (2022). Expected global suitability of coffee, cashew and avocado due to climate change. PLoS ONE, v. 27, p. e0261976.

Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resource Research, v.20, pp. 727-732.

Ho, V. T. T. et al. (2020). Design and fabrication the smart irrigation technology using soil moisture sensor system for vine in Ninh Thuan, Vietnam. IOP Conference Series: Materials Science and Engineering, v. 991, p. 012143.

IPCC – Intergovernmental Panel on Climate Change (2018). Impactos do aquecimento global de 1,5 °C nos sistemas naturais e humanos. In: Relatório Especial sobre o Aquecimento de Global 1,5°C. Disponível em: <https://www.ipcc.ch/sr15/chapter/chapter-3/>.

IPCC – Intergovernmental Panel on Climate Change (2021). Press release AR6: Climate change widespread, rapid, and intensifying. Geneva (Switzerland) 9 August 2021.

Jaramillo, J., Muchugo, E., Vega. F. E., Davis, A., Borgemeister, C., & Chabi-Olaye, A. (2011). Some Like it Hot: The Influence and Implications of Climate Change on Coffe Berry Borer (Hypothenemus Hampei) and Coffee Production in East Africa. PLoS ONE, v.6, p. e24528.

Kendall, M. G. (1975). Rank Correlation Measures. Charles Griffin, London, 202 p.

Kuinchtner, A., & Buriol, G. A. (2001). Clima do Estado do Rio Grande do Sul segundo a Classificação Climática de Köppen e Thornthwaite. Disciplinarum Scientia. Série: Ciências Exatas. v.2, pp.171-182.

Landínez, S. P. C., Rodríguez, P. E. C., & Gómez, D. F. S. (2019). Design and implementation of a software for the traceability of coffee processing. Ciencia Tecnologia Agropecuaria, v. 20, pp. 523-536.

Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, v.13, pp. 245-259.

Marengo, J. A., Rodrigues-Filho, S., & Santos, D. V. (2021). Impacts, vulnerability and adaptation to climate change in Brazil: an integrated approach. Sustentabilidade em Debate, v. 11, pp. 14-23.

Matiello, J. B. et al. (2010). Cultura de Café no Brasil: manual de recomendações. Varginha: Fundação ProCafé.

Morettin, P. A., & Toloi, C. M. C. (2006). Análise de Séries Temporais (2a ed., 535 p.). São Paulo: E. Blucher.

Nguyen, M. P. et al. (2020). Local knowledge about ecosystem services provided by trees in coffee agroforestry practices in northwest Vietnam. Land, v. 9, pp. 1-27.

Ocampo-López, O. L. et al. (2017). Nuevo método estándar para la recolección selectiva de café. Ingeniería, Investigación y Tecnología, v. 18, pp. 127-137.

Ojeda, J. J., Volenec, J. J., Brouder, S. M., Caviglia, O. P., & Agnusdei, M. G. (2017). Evaluation of Agricultural Production Systems Simulator as Yield Predictor of Panicum virgatum and Miscanthus x giganteus in Several US Environments. GCB Bioenergy, v.9, pp.796-816.

Olguin, J. Q., & Durán, R. R. (2017). Evaluación térmica y financiera del proceso de secado de grano de café en un secador solar activo tipo invernadero. Revista Mexicana de Ciências Agrícolas, v. 8, p. 321.

Paiva, E. F. F. (2010). Avaliação sensorial de cafés especiais: um enfoque multivariado. Tese (Doutorado em Ciência dos Alimentos). UFLA, Lavras, MG, Brasil.

Petek, M. R., Sera, T., & Fonseca, I. C. de B. (2009). Exigências Climáticas para o Desenvolvimento e Maturação dos Frutos de Cultivares de Coffea arabica. Bragantia, v.68, pp.169-181.

Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society. Series C (Applied Statistics), v.28, n.2, pp.126-135.

Pinto, H. S., Assad, E. D., Zullo Junior, J., Evangelista, S., Otavian, A. F., Avila, A. M. H. de, Evangelista, B. A., Marin, F. R., Macedo Junior, C., Pellegrino, G. Q., Coltri, P. P., & Coral, G. (2008). Aquecimento global e a nova geografia da produção agrícola no Brasil. Campinas: Embrapa Informática Agropecuária, 81 p.

Priori, A. et al. (2012). História do Paraná: séculos XIX e XX. Maringá: Eduem. A cafeicultura no Paraná. pp. 91-104.

Rahman, M. M. et al. (2021). Conservation tillage (CT) for climate-smart sustainable intensification: Assessing the impact of CT on soil organic carbon accumulation, greenhouse gas emission and water footprint of wheat cultivation in Bangladesh. Environmental and Sustainability Indicators, v. 10, p. 100106.

Rodrigues, N. A., Reis, E. A. dos, & Tavares, M. (2014). Influências dos fatores climáticos no custo de produção do café arábica. Custos e @gronegócio on line, v.10, pp. 216-255.

Santos, O. L., Reinato, C. H. R., Junqueira, J. D., Franco, E. L., Souza, C. W. A., & Rezende, A. N. (2017). Custo-benefício da secagem de café em diferentes tipos de terreiro. Revista Agrogeoambiental, v. 9, pp. 11-21. Pouso Alegre MG.

Savary, S., Nelson, A., Willocquet, L., Pangga, I., & Aunario, J. (2012). Modeling and mapping potential epidemics of rice diseases globally. Crop Protection, v. 34, pp. 6-17.

Sayago, S., Ovando, G., Almorox, J., & Bocco, M. (2020). Daily solar radiation from NASA-POWER product: assessing its accuracy considering atmospheric transparency. International Journal of Remote Sensing, v.41, pp. 897-910.

Scheer, S. J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security, v.1, pp. 2-15.

Sonali, P., & Nagesh, K. D. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, v. 476, pp. 212-227.

Tabari, H., Marofi, S., Aeini, A., Talaee, P.H., & Mohammadi, K. (2011). Trend Analysis of Reference Evapotranspiration in the Western half of Iran. Agricultural and Forest Meteorology, v.151, pp.128-136.

Tavares, P. S., Giarolla, A., Silva, A. J. P., Lyra, A. A., & Chou, S. C. (2018). Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Regional Environmental Change, v.18, pp. 873-883.

Torres, G. A. L; Zezzo, L. V., São José, R. V., Greco, R., & Coltri, P. P. (2022). Exposure to climate risk: A case study for coffee farming in the region of Alta Mogiana, São Paulo. Anais da Academia Brasileira de Ciências, v.94, e20211379.

Vanhoni, F., & Mendonça, F. A. (2008). O clima no litoral do Estado do Paraná. Revista Brasileira de Climatologia, v. 3/4, pp. 49-64.

Van Wart, J., Grassini, P., Yang, H., Claessens, L., Jarvis, A., & Cassman, K. G. (2015). Creating long-term weather data from thin air for crop simulation modeling. Agricultural and Forest Meteorology, v. 209/210, pp. 49-58.

Vaz de Lima, J. G., & Coltri, P. P. (2021). Change analyses of coffee soil cover in the state of Parana [Brazil]: a case study. Labor & Engenho, v. 15, p. e021010. Campinas SP.

Wagner, S. et al. (2021). Impact of climate change on the production of Coffea Arabica at Mt. Kilimanjaro, Tanzania. Agriculture, v. 11, pp. 1-15. Switzerland.

Yang, P. et al. (2020). Investigation of precipitation concentration and trends and their potential drivers in the major river basins of Central Asia. Atmospheric Research, v.245, p. 105128.

Zhang, S., & Lu, X.X. (2009). Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. Catena, v.77, pp.130-142.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Guilherme Almussa Leite Torres, Roberto Greco, Priscila Pereira Coltri, Aline Pascoalino

Downloads

Download data is not yet available.