Banner Portal
Factors determining the path of digital technologies adoption of Brazilian industrial firms
PDF (English)

Palavras-chave

Tecnologias digitais
Adoção tecnológica
Empresas industriais
Brasil

Como Citar

RUIZ, Ana Urraca; TORRACA, Julia; BRITTO, Jorge; FERRAZ, João Carlos. Factors determining the path of digital technologies adoption of Brazilian industrial firms. Revista Brasileira de Inovação, Campinas, SP, v. 22, n. 00, p. 1–35, 2023. DOI: 10.20396/rbi.v22i00.8668448. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/rbi/article/view/8668448. Acesso em: 13 abr. 2024.

Resumo

This paper aims to identify the main factors affecting the adoption of digital technologies for a panel of 299 Brazilian industrial firms surveyed in 2017 and 2019/20. A probabilistic model is used to estimate the likelihood of certain organizational, technological, and environmental characteristics of the firms affecting digital adoption in the two survey periods. The study reveals that digital adoption has advanced but still is at an infant stage in Brazil. The econometric results point out that current adoption, size, belonging to high digital intensity industries, being an exporter, and training the workforce have a significant positive effect on digital adoption. However, skills qualification has a negative effect, suggesting that qualification on previous technologies can be more a constraint (lock-in) than a pre-requisite for digitalization.  One must interpret such findings against growth-adverse, investment-hostile economic framework conditions where firms can react in any given direction: move forward to survive, stay put to face uncertainty, and/or backtrack defensively.

https://doi.org/10.20396/rbi.v22i00.8668448
PDF (English)

Referências

AGRESTI, A. Categorical data analysis. 2 ed. New Jersey: John Wiley & Sons, Inc. 2002.

ARIFIN, Z.; FIRMANZAH, F., A.; WIJANTO, S. H; The determinant factors of technology adoption for improving firm’s performance: an empirical research of Indonesia’s electricity company. Gadjah Mada International Journal of Business, v. 18, n. 3, p. 237-261, September-December 2016.

ARVANITIS S. Information technology, workplace organization and the demand for labour of different skills: firm-level evidence for the Swiss economy. In: KRIESI, H.; FARAGO, P.; KOHLI, M.; ZARIN-NEJADAN, M. (Eds.). Contemporary Switzerland: revisiting the special case. New York and Houndmills: Palgrave Macmillan, 2005, p. 135-162.

BAKER, J. The technology–organization–environment framework. In: DWIVEDI, Y. K.; WADE, M. R.; SCHNEBERGER, S. L. (Eds.). Information systems theory: explaining and predicting our digital society. Vol. 1. [Integrated Series in Information Systems, n. 28.] New York: Springer, 2012, p. 231-245.

BAYO-MORIONES, A.; LERA-LÓPES, F. A firm-level analysis of determinants of ICT adoption in Spain. Technovation, v. 27, p. 352–366, 2007.

BEN AOUN-PELTIER, L.; VICENTE, M. R. E-commerce diffusion: exploring the determinants of the adoption and extent of usage at firm-level. Oviedo: STATEC, University of Oviedo, February 2012.

BRESNAHAN, T. F.; BRYNJOLFSSON, E.; HITT, L. M. Information technology, workplace organisation, and the demand for skilled labor: firm-level evidence. Quarterly Journal of Economics, v. 112. n. 1, p. 339-376, 2002.

CALVINO, F.; CRISCUOLO, C.; MARCOLIN, L.; SQUICCIARINI, M. A taxonomy of digital intensive sectors. [OECD Science, Technology and Industry Working Papers 2018/14.] Paris: OECD Publishing, 2018. DOI: https://doi.org/10.1787/f404736a-en.

CARMONA, R.; AMATO NETO, J.; ASCÚA, R. Industria 4.0 en empresas manufactureras en Brasil. Naciones Unidas, Santiago de Chile. 2020.

CNI - CONFEDERAÇÃO NACIONAL DA INDÚSTRIA. Indicadores industriais. Utilização da capacidade instalada. Brasília, DF: CNI, 2021. Available at: https://www.portaldaindustria.com.br/estatisticas/indicadores-industriais/.

COHEN, W. M.; LEVINTHAL, D. A. Absorptive capacity: a new perspective on learning and innovation. Administrative Science Quarterly, v. 35, p.128-52, 1990.

DASGUPTA, S.; AGARWAL, D.; IOANNIDIS, A.; GOPALAKRISHNAN, S. Determinants of information technology adoption: an extension of existing models to firms in a developing country. Journal of Global Information Management, v. 7. n. 3, p. 30-40, 1999.

DAVIS, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, v. 13, n. 3, p. 319-340, 1989. DOI: https://doi.org/10.230749008

DE LA FUENTE, A. On the sources of convergence: A close look at the Spanish regions. European Economic Review, v. 46, p. 569-599, 2002.

DELERA, M. C.; DELERA, M.; PIETROBELLI, C.; CALZA, E.; LAVOPA, A. Does value chain participation facilitate the adoption of Industry 4.0 Technologies in developing countries? The Italian Centre for International Development, 2020.

DOMS, M.; DUNNE, T.; TROSKE, K. Workers, wages and technology. Quarterly Journal of Economics, v. 112, n. 1, p. 253-290, 1997.

FABIANI, S.; SCHIVARDI, F.; TRENTO, S. ICT adoption in Italian manufacturing: firm-level evidence. Industrial and Corporate Change, v. 14, n. 2, p. 225-249, 2005.

FALK, M. Diffusion of information technology, internet use and the demand for heterogeneous labour. ZEW Discussion Paper, Mannheim, n. 48, 2001.

GEROSKI, P. A. Models of technology diffusion. Research Policy, v. 29, p. 603-625, 2000.

HALLER, S.; SIEDSCHLAG, I. Determinants of ICT adoption: evidence from firm-level data. Applied Economics, v. 43, n. 26, p. 3775-3788, October 2011.

HOLLENSTEIN, H. The determinants of the adoption of information and communication technologies (ICT). An empirical analysis based on firm-level data for the Swiss business sector. Structural Change and Economic Dynamics, v. 15, n. 3, p. 315-342, 2004.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. PINTEC – Pesquisa Brasileira de Inovação. 2017. Rio de Janeiro: IBGE, 2017. Available at: https://sidra.ibge.gov.br/pesquisa/pintec.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. SCN - Sistema de Contas Nacionais. Rio de Janeiro: IBGE, 2019. Available at: https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9052-sistema-de-contas-nacionais-brasil.html

IEL/CNI et al. Industry 2027: risks and opportunities for Brazil in the face of disruptive innovations. Final report: Building the Future of Brazilian Industry. Brasília, IEL/NC, 2018.

KARSHENAS, M.; STONEMAN, P. Technological diffusion. In: STONEMAN, P. (Ed.). Handbook of the Economics of Innovation and Technological Change. Oxford: Blackwell, 1995, p. 263-297.

KOWTHA, N. R.; CHOON, T. W. Determinants of website development: a study of electronic commerce in singapore. Information and Management, v. 39, n. 3, p. 227-242, 2001.

LONG, J. S.; FREESE, J. Regression models for categorical and limited dependent variables using stata. 2 Ed. College Station, TX: Stata Press, 2006.

LONG, J. S.; FREESE, J. Regression models for categorical dependent variables using Stata (3 ed.). College Station, TX: Stata Press, 2014.

MARINS, H.M.; DIAS, Y.B.; CASTILHO, P.; LEITE, D. Transformações digitais no Brasil: insights sobre o nível de maturidade digital nas empresas do país. McKinsey & Company. Brasil. 2019.

MORGAN, A.; COLEBOURNE, D.; THOMAS, B. The development of ICT advisors for SME business: an innovative approach. Technovation, v. 26, n. 8, p. 980-987, 2006.

MOWERY, D. C.; OXLEY, J. Inward technology transfer and competitiveness: The role of national innovation systems. Cambridge Journal of Economics, v. 19, n. 1, p. 67-93, 1995.

NELSON, R. R.; WINTER, S. G. An evolutionary theory of economic change. Cambridge, MA: Belknap Press/Harvard University Press, 1982.

NUTLEY, S.; DAVIES, H.; WALTER, I. Conceptual synthesis 1: learning from the diffusion of innovations. Working Paper, University of St Andrews, Department of Management, n. 10, November 2002.

OLIVEIRA, T.; MARTINS, M. F. Literature review of information technology adoption models at firm level. The Electronic Journal Information Systems Evaluation, v. 14, n. 1, p. 110-121, 2011.

PFEIFFER, S.; LEE, H.; ZLRBIG, C.; SUPHAN, A. Industrie 4.0 – Qualification 2025 (Management Summary). Frankfurt: VDMA, 2016.

RAIS - Relação Anual de Informações Sociais. Brasília, DF: Ministério da Economia, 2021. Available at: https://www.rais.gov.br/sitio/index.jsf.

TEO, T. S. H.; TAN, M. An empirical study of adopters and non-adopters of the internet in Singapore. Information and Management, v. 34, n. 6, p. 339-345, 1998.

THONG, J. Y. L An integrated model of information systems adoption in small business. Journal of Management Information Systems, v. 4, n. 15, p. 187-214, 1999.

TORNATZKY, L. G.; FLEISCHER, M. The processes of technological innovation. Lexington, MA: Lexington Books, 1990.

WILLIAMS, R. Understanding and interpreting generalized ordered logit models. The Journal of Mathematical Sociology, v. 40, n. 1, p. 7-20, 2016. Available at: http://www.tandfonline.com/doi/full/10.1080/0022250X.2015.1112384.

ZAHRA, S. A.; GEORGE, G. Absorptive capacity: A review, reconceptualization, and extension. Academy of Management Review, v. 27, n. 2, p. 185-203, 2002.

ZOLAS, N.; Kroff, Z; BRYNJOLFSSON, E.; McELHERAN, K.; BEEDE. D.N.; BUFFINGTON, C.; GOLDSCHLAG, N.; FOSTER, L.; DINLERSOZ, E. Advanced technologies adoption and use by US firms: evidence from the annual business survey. NBER Working Paper Series. WP 28290. National Bureau of Economic Research, 2020.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Revista Brasileira de Inovação

Downloads

Não há dados estatísticos.