Hypodontia: genetics and future Hypodontia: genetics and future perspectives

Authors

  • Trevor J Pemberton University of Southern California
  • Parimal Das Department of Surgical Oncology, M.D. Anderson Cancer Center.
  • Pragna I Patel Department of Surgical Oncology, M.D. Anderson Cancer Center

DOI:

https://doi.org/10.20396/bjos.v4i13.8641817

Keywords:

Hypodontia. Tooth agenesis. PAX9. MSX1. Prevalence. Mutations

Abstract

Tooth development is a complex process of reciprocal interactions that we have only recently begun to understand. With the large number of genes involved in the odontogenic process, the opportunity for mutations to disrupt this process is high. Tooth agenesis (hypodontia) is the most common craniofacial malformation with patients missing anywhere from one tooth to their entire dentition. Hypodontia can occur in association with other developmental anomalies (syndromic) or as an isolated condition (non-syndromic). Recent advances in genetic techniques have allowed us to begin understanding the genetic processes that underlie the odontogenic process and to identify the mechanisms responsible for tooth agenesis. Thus far two genes have been identified by mutational analysis as the major causes of non-syndromic hypodontia; PAX9 and MSX1. Haploinsufficiency of either has been observed to cause the more severe forms of hypodontia whilst point mutations cause hypodontia to varying degrees of severity. With the prevalence of hypodontia having been observed to have increased during the 20th century, the future identification and analysis of its genetic basis is essential to allow us to better treat the condition. The clinician can facilitate this process by collaborating with the human geneticist and referring patients/families with familial hypodontia for investigative research.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Trevor J Pemberton, University of Southern California

Trevor received his undergraduate training in molecular genetics at the University of Sussex. He also earned his D.Phil. in biochemistry from the University of Sussex in 2005, where, under the mentorship of Dr. John Kay, he identified and characterized the repertoire of cyclophilin genes, the targets of the immunosuppressant drugs Cyclosporin A and Sanglifehrin A, in the then partially annotated genome of the fission yeast Schizosaccharomyces pombe. In his postdoctoral training under the mentorship of Drs. Pragna Patel (University of Southern California), Frank Haluska (Tufts-New England Medical Center), and Noah Rosenberg (Stanford University), Trevor focused on various aspects of human genetics that included understanding the genetic etiology of Mendelian and complex traits, how population history and cultural factors influence patterns of human genetic variation — particularly in the population of India — and the ways in which these patterns can be harnessed to advance the discovery of genes that underlie disease. In February 2013, Trevor joined the faculty of theDepartment of Biochemistry and Medical Genetics at the University of Manitoba

Pragna I Patel, Department of Surgical Oncology, M.D. Anderson Cancer Center

Dr. Patel received her Ph.D. in Biochemistry in 1982 from West Virginia University and did her Postdoctoral Training in human molecular genetics at Baylor College of Medicine. Prior to joining the Institute for Genetic Medicine in 2004, Dr. Patel was a Professor of Neurology, Molecular & Human Genetics, and Neuroscience at Baylor College of Medicine.

References

Schubel F, Partsch CJ. Thalidomide-embryopathies and theireffect on dentition. Dtsch Zahnarztl Z 1965; 20: 1278-83.

Shapiro SD, Farrington FH. A potpourri of syndromes with anomalies of dentition. Birth Defects Orig Artic Ser 1983; 19: 129-40.

Bella G, Caltabiano M, Russo S, Messina G. Statistical study of the incidence of agenesis in a sample of 447 cases of dysgnathia. Minerva Stomatol 1984; 33: 609-14.

Maguire A, Craft AW, Evans RG, Amineddine H, Kernahan J, Macleod RI. The long-term effects of treatment on the dental condition of children surviving malignant disease. Cancer 1987; 60: 2570-5.

Näsman M, Forsberg C-M, Dahllöf G. Long-term dental development in children after treatment for malignant disease. Eur J Orthod 1997; 19: 151-9.

Liu W, Wang H, Zhao S, Zhao W, Bai S, Zhao Y, et al. The novel gene locus for agenesis of permanent teeth (HeZhao deficiency) maps to chromosome 10q11.2. J Dent Res 2001; 80: 1716-20.

Ranta R. A Review of tooth formation in children with cleft lip/palate. Am J Orthod Dentofacial Orhop 1986; 90: 11-8.

Pinheiro M, Freire-Maia N. Ectodermal dysplasias: a clinical classification and a causal review. Am J Med Genet 1994; 53: 153-62.

Shapira J, Chaushu S, Becker A. Prevalence of tooth transposition, third molar agenesis, and maxillary canine impaction in individuals with Down syndrome. Angle Orthod 2000; 70: 290-6.

Mhanni A, Cross H, Chudley AE. Kabuki syndrome: description of dental findings in 8 patients. Clin Genet 1990; 56: 154-7.

Karlstedt E, Kaitila I, Pirinen S. Phenotypic features of dentition in diastrophic dysplasia. J Craniofac Genet Dev Biol 1996; 16: 164-73.

Venter JC. The Sequence of the Human Genome. Science 2001; 291: 1304-51.

Stockton DW, Das P, Goldenberg M, D’Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet 2000; 24: 18-9.

Vieira AR, Meira R, Modesto A, Murray JC. MSX1, PAX9, and TGFα Contribute to Tooth Agenesis in Humans. J Dent Res 2004; 83: 723-7.

Lidral AC, Reising BC. The Role of MSX1 in Human Tooth Agenesis. J Dent Res 2002; 81: 274-8.

Line SR. Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evol Dev 2003; 5: 295-304.

Line SRP. Molecular morphogenetic fields in the development of human dentition. J Theor Biol 2001; 211: 67-75.

Online Mendelian Inheritance in Man, OMIM (TM); 2000. Available from: URL: http://www.ncbi.nlm.nih.gov/omim.

Robson KJ, Chandra T, MacGillivray RT, Woo SL. Polysome immunoprecipitation of phenylalanine hydroxylase mRNA from rat liver and cloning of its cDNA. Proc. Nat. Acad. Sci. USA 1982;79(15):4701-05.

Lidsky AS, Robson KJ, Thirumalachary C, Barker PE, Ruddle FH, Woo SL. The PKU locus in man is on chromosome 12.Am. J. Hum. Genet. 1984;36(3):527-33.

Lidsky ASL, M.L., Morse HG, Kao FT, Rabin M, Ruddle FH, Woo SL. Regional mapping of the phenylalanine hydroxylase gene and the phenylketonuria locus in the human genome. Proc Nat Acad Sci USA 1985; 82: 6221-5.

Arte S, Nieminen P, Pirinen S, Thesleff I, Peltonen L. Gene defect in hypodontia: exclusion of EGF, EGFR, and FGF-3 as candidate genes. J Dent Res 1996; 73: 1346-52.

Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987; 32: 123-7.

Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988; 103: 155-69.

Neubuser A, Peters H, Balling R, Martin GR. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 1997; 90: 247-55.

MacKenzie A, Leeming GL, Jowett AK, Ferguson MWJ, Sharpe PT. The homeobox gene 7.1 has specific regional and temporal expression patterens during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development 1991; 11: 269-85.

Peters H, Neubuser A, Kratochwil K, Balling R. Pax9- deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 1998; 12: 2735-47.

Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 1994; 6: 348-56.

Mattheeuws N, Dermaut L, Martens G. Has hypodontia increased in Caucasians during the 20th century? A metaanalysis. Eur J Orthod 2004; 26: 99-103.

Muller TP, Hill IN, Petersen AC, Blayney JR. A survey of congenitally missing permanent teeth. J Am Dent Assoc 1970; 81: 101-7.

Lavelle CL, Ashton EH, Flinn RM. Cusp pattern, tooth size and third molar agenesis in the human mandibular dentition. Arch Oral Biol. 1970; 15: 227-37.

Schalk-van der Weide Y. Oligodontia. A clinical, radiographic and genetic evaluation. Doctoral Thesis. Utrecht, Finland: University of Utrecht; 1992.

Graber LW. Congenital absence of teeth: a review with emphasis on inheritance patterns. J Am Dent Assoc 1978; 96: 266-75.

Cohen MMJ. Craniofacial disorders caused by mutations in homeobox genes MSX1 and MSX2. J Craniofac Genet Dev Biol 2000; 20: 19-25.

Brekhus P, Oliver C, Montelinus G. A study of the pattern and combination of congenitally missing teeth in man. J Dent Res 1944; 23: 117-31.

Symons AL, Stritzel F, Stamation J. Anomalies associated with hypodontia of the permanent later incisor and second premolar. J Clin Pediatr Dent. 1993; 17: 109-11.

Dolder E. Zahn-Unterzahl. Diagnostik, Statistik, Artikulation. Schweiz Monatsschr Zahnmed 1936; 46: 663-71.

Grahnen H. Hypodontia in the permanent dentition. Aclinical and genetical investigation. Odontol Revy 1956; 7(Suppl.3): 1-100.

Tavajohi-Kermani H, Kapur R, Sciote JJ. Tooth agenesis and craniofacial morphology in an orthodontic population. Am J Orthod Dentofacial Orthop 2002; 122: 39-47.

Brook AH, Elcock C, Al-Sharood MH, McKeown HF, Khalaf K, Smith RN. Further Studies of a Model for the Etiology of Anomalies of Tooth Number and Size in Humans. Connect Tissue Res 2002; 43: 289-95.

Rose JS. A survey of congenitally missing teeth, excluding third molars, in 6000 orthodontic patients. Dent Pract Dent Rec 1966; 17: 107-14.

Brook AH. A unifying aetiological explanation for anomalies of human tooth number and size. Arch Oral Biol 1984; 29: 373-8.

Hobkirk JA, Brook AH. The management of patients with severe hypodontia. J Oral Rehabil 1980; 7: 289-98.

McKeown HF, Robinson DL, Elcock C, Al-Sharood M, Brook AH. Tooth dimensions in hypodontia patients, their unaffected relatives and a control group measured by a new image analysis system. Eur J Orthod 2002; 24: 131-41.

Das P, Stockton DW, Bauer C, Shaffer L, D’Souza RN, Wright JT, et al. Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum Genet 2002; 110: 371-6.

Goldenberg M, Das P, Messersmith M, Stockton DW, Patel PI, D’Souza RN. Clinical, Radiographic, and Genetic Evaluation of a Novel Form of Autosomal-dominant Oligodontia. J Dent Res 2000; 79: 1469-75.

Das P, Hai M, Elcock C, Leal SM, Brown DT, Brook AH. Novel missense mutations and a 288-bp exonic insertion in PAX9 in families with autosomal dominant hypodontia. Am J Med Genet 2003; 118: 35–42.

Klein ML, Nieminen P, Lammi L, Niebuhr E, Kreiborg S. Novel Mutation of the Initiation Codon of PAX9 Causes Oligodontia. J Dent Res 2005; 84: 43-7.

Arte S. Phenotypic and Genotypic features of Familial Hypodontia. Doctoral Thesis. Helsinki, Finland: University of Helsinki; 2001.

Arte S, Nieminen P, Apajalahti S, Haavikko K, Thesleff I, Pirinen S. Characteristics of incisor-premolar hypodontia in families. J Dent Res 2001; 80: 1445-50.

Phillip MJ, Caurdy JC. Inheritance of Hypodontia in Consanguineous Families of Arabic Decent. Ann Dent 1985; 44: 39-41.

Tal H. Familial hypodontia in the permanent dentition: a case report. J Dent 1981; 9: 260-4.

Ahmad W, Brancolini V, ul Faiyaz MF, Lam H, ul Haque S, Haider M, et al. A locus for autosomal recessive hypodontia with associated dental anomalies maps to chromosome 16q12.1. Am J Hum Genet 1998; 62: 987-91.

Alvesalo L. The influence of sex-chromosome genes on tooth size in man: A genetic and quantitative study. Am J Orthod 1971; 60: 420.

Huskins CI. On the inheritance of an anomaly of human dentition. J Hered 1930; 21: 279-82.

Burzynski NJ, Escobar VH. Classification and genetics of numeric anomalies of dentition. Birth Defects Orig Artic Ser 1984; 19: 95-106.

Suarez BK, Spence MA. The genetics of hypodontia. J Dent Res 1974; 53: 781-5.

Chosack A, Eidelman E, Cohen T. Hypodontia: A polygenic trait, a family study among Israeli Jews. J Dent Res 1975; 54: 16-9.

Peck L, Peck S, Attia Y. Maxillary canine-first premolar transposition, associated dental anomalies and genetic bases. Angle Orthod 1993; 63: 99-109.

Peck S, Peck L, Kataja M. The palatally displaced canine as a dental anomaly of genetic origin. Angle Orthod 1994; 64: 249-56.

Glenn FB. Incidence of congenitally missing permanent teeth in a private pedodontic practice. ASDC J Dent Child 1961; 28: 317-20.

Egermark-Eriksson I, Lind V. Congenital numerical variation in the permanent dentition. D. Sex distribution of hypodontia and hyperodontia. Odontol Revy 1971; 22: 309-15.

Eidelman E, Chosack A, Rosenzweig KA. Hypodontia: prevalence amongst Jewish populations of different origin. Am J Phys Anthropol 1973; 39: 129-33.

Rasmussen P. Severe hypodontia: diversities in manifestations. J Clin Pediatr Dent 1999; 23: 179-88.

Schalk-van der Weide Y, Steen WHA, Bosman F. Distribution of missing teeth and tooth morphology in patients with oligodontia. J Dent Child 1992; 59: 133-40.

Rolling S, Poulsen S. Oligodontia in Danish schoolchildren. Acta Odontol Scand 2001; 59: 111-2.

Jorgenson RJ. Clinician´s view of hypodontia. J Am Dent Assoc 1980; 101: 283-6.

Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop 2000; 117: 650-6.

Riesenfeld A. The effect of environmental factors on tooth development: an experimental investigation. Acta Anat 1970; 77: 188-215.

Speirs AL. Thalidomide. Lancet 1965; 2: 1074.

Axrup K, D´ Avignon M, Hellgren K, Herikson CO, Juhlin IM, Larsson KS. Children with thalidomide embryopathy: odontological observations and aspects. Acta Odontol Scand 1966; 24: 3-21.

Cohen MM. Congenital, genetic, and endocrinologic influences on dental occlusion. Dent Clin North Am 1975; 19: 499-514.

Schalk-van der Weide Y, Beemer FA, Faber JAJ, Bosman F. Symptomatology of patients with Oligodontia. J Oral Rehabil 1994; 21: 247-61.

Kjaer I. Neuro-osteology. Crit Rev Oral Biol Med 1998; 9: 224-44.

Kjaer I, Kocsis G, Nodal M, Christensen LR. Aetiological aspects of mandibular tooth agenesis—focusing on the role of nerve, oral mucosa, and supporting tissues. Eur J Orthod 1994; 16: 371-5.

Kjaer I. Can the location of tooth agenesis and the location of initial bone loss seen in juvenile periodontitis be explained by neural developmental fields in the jaws? Acta Odontol Scand 1997; 55: 70-2.

Linderstrom A, Samuelsson L, Huggare J. Is tooth agenesis related to brainstem anomalies in myelomeningocele patients with Chiari II malformations? Acta Odontol Scand 2002; 60: 337-40.

Polder BJ, Van’t Hof MA, Van der Linden FPGM, KuijpersJagtman AM. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol 2004; 32: 217-26.

Lapter M, Slaj M, Skrinjaric I, Muretic Z. Inheritance of hypodontia in twins. Coll Antropol 1998; 22: 291-8.

Markovic M. Hypodontia in twins. Swed Dent J Suppl 1982; 15: 153-62.

Pirinen S, Kentala A, Nieminen P, Varilo T, Thesleff I, Arte S. Recessively inherited lower incisor hypodontia. J Med Genet 2001; 38: 551-8.

Dahlberg AA. Inherited congenital absense of six incisors, deciduous and permanent. J Dent Res 1937; 16: 59-62.

Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 1996; 13: 417-21.

Nieminen P, Kotilainen J, Aalto Y, Knuutila S, Pirinen S, Thesleff I. MSX1 Gene is Deleted in Wolf-Hirschhorn Syndrome Patients with Oligodontia. J Dent Res 2003; 82: 1013-7.

Scarel RM, Trevilatto PC, Di Hipolito OJ, Camargo LEA, Line SRP. Absence of mutations in the homeodomain of the MSX1 gene in patients with hypodontia. Am J Med Genet 2000; 92: 346-9.

Hu G, Vastardis H, Bendall AJ, Wang Z, Logan M, Zhang H, et al. Haploinsufficiency of Msx1: a mechanism for selective tooth agenesis. Mol Cell Biol 1998; 18: 6044-51.

van den Boogaard M-JH, Dorland M, Beemer FA, van Amstel HK. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 2000; 24: 342-3.

De Muynck S, Schollen E, Matthijs G, Verdonck A, Devriendt K, Carels C. A novel MSX1 mutation in hypodontia. Am J Med Genet 2004; 128: 401-3.

Jumlongras D, Bei M, Stimson JM, Wang W-F, DePalma SR, Seidman CE. A nonsense mutation in MSX1 causes Witkop syndrome. Am J Hum Genet 2001; 69: 67-74.

Isaac VE, Sciavolino P, Abate C. Multiple amino acids determine DNA binding specificity of the Msx-1 homeodomain. Biochemistry 1995; 34: 7127-34.

Frazier-Bowers SA, Guo DC, Cavender A, Xue L, Evans B, King T, et al. A Novel Mutation in Human PAX9 Causes Molar Oligodontia. J Dent Res 2002; 81: 129-33.

Nieminen P, Arte S, Tanner D, Paulin L, Alaluusua S, Thesleff I, et al. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia. Eur J Hum Genet 2001; 9: 743-6.

Lammi L, Halonen K, Pirinen S, Thesleff I, Arte S, Nieminen P. A missense mutation in PAX9 in a family with distinct phenotype of oligodontia. Eur J Hum Genet 2003; 11: 866-71.

Jumlongras D, Lin JY, Chapra A, Seidman CE, Seidman JG, Maas RL, et al. A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia. Hum Genet 2004; 114: 242-9.

Mostowska A, Kobielak A, Biedziak B, Trzeciak WH. Novel mutation in the paired box sequence of PAX9 gene in a sporadic form of oligodontia. Eur J Oral Sci 2003; 111: 272-6.

Brook AH. Dental anomalies of number, form and size: their prevalence in British schoolchildren. J Int Assoc Dent Child 1974; 5: 37-53.

Grahnen H, Granath LE. Numerical variations in primary dentition and their correlation with the permanent dentition. Odontol Revy 1961; 12: 348-57.

Nik-Hussein NN. Hypodontia in the permanent dentition: a study of its prevalence in Malaysian children. Aust Orthod J 1989; 11: 93-5.

Carvalho JC, Vinker F, Declerck D. Malocclusion, dental injuries and dental anomalies in the primary dentition of Belgian children. Int J Paediatr Dent 1998; 8: 137-41.

Whittington BR, Durward CS. Survey of anomalies in primary teeth and their correlation with the permanent dentition. N Z Dent J 1996; 92: 4-8.

Nordgarden H, Jensen JL, Storhaug K. Reported prevalence of congenitally missing teeth in two Norwegian counties. Community Dent Health 2002; 19: 258-62.

Magnusson TE. Hypodontia, hyperodontia, and douple formation of primary teeth in Iceland. An epidemiological study. Acta Odontol Scand 1984; 42: 137-9.

Ravn JJ. Aplasia, supernumerary teeth and fused teeth in the primary dentition. An epidemiologic study. Scand J Dent Res 1971; 79: 1-6.

Järvinen S, Lehtinen L. Supernumerary and congenitally missing primary teeth in Finnish children. An epidemiologic study. Acta Odontol Scand 1981; 39: 83-6.

Ng’ang’a RN, Ng’ang’a PM. Hypodontia of permanent teeth in a Kenyan population. East Afr Med J 2001; 78: 200-3.

Yonezu T, Hayashi YS, J., Machida Y. Prevalence of congenital dental anomalies of the deciduous dentition in Japanese children. Bull Tokyo Dent Coll 1997; 38: 27-32.

Salama FS, Abdel-Megid FY. Hypodontia of primary and permanent teeth in a sample of Saudi children. Egypt Dent J 1994; 40: 525-632.

Backman B, Wahlin YB. Variations in number and morphology of permanent teeth in 7-year-old Swedish children. Int J Paediatr Dent 2001; 11: 11-7.

Magnusson TE. Prevalence of hypodontia and malformations of permanent teeth in Iceland. Community Dent Oral Epiodemiol 1977; 5: 173-8.

O’Dowling IB. Hypo-hyperdontia in an Irish population. J Ir Dent Assoc 1989; 35: 114-7.

Rolling S. Hypodontia of permanent teeth in Danish schoolchildren. Scand J Dent Res 1980; 88: 365-9.

Ravn J, Nielsen L. Supernumerary teeth and aplasia among Copenhagen schoolchildren. Tandlaegebladet 1973; 77: 12-21.

Haavikko K. Hypodontia of permanent teeth. An orthopantomographic study. Suom Hammaslääk Toim 1971; 67: 219-25.

Hunstadbraten K. Hypodonti i det permanente tannsett. Nor Tannlaegeforen Tid 1964; 74: 64-9.

Hundstadbraten K. Hypodontia in the permanent dentition. J Dent Child 1973; 73: 115-7.

Wisth PJ, Thunold K, Böe OE. Frequency of hypodontia in relation to tooth size and dental arch width. Acta Odontol Scand 1974; 32: 201-6.

Aasheim B, Ögaard B. Hypodontia in 9-year-old Norwegians related to need of orthodontic treatment. Scand J Dent Res 1993; 101: 257-60.

Bergström K. An orthopantomographic study of hypodontia, supernumeraries and other anomalies in school children between the ages of 8-9 years. An epidemiological study. Swed Dent J 1977; 1: 145-57.

Thompson GW, Popovich F. Probability of congenitally missing teeth: results in 1,191 children in Burlington Growth Centre in Toronto. Community Dent Oral Epiodemiol 1974; 2: 26-32.

Davis PJ. Hypodontia and hyperdontia of permanent teeth in Hong Kong schoolchildren. Community Dent Oral Epiodemiol 1987; 15: 218-20.

Niswander JD, Sujaku C. Congenital anomalies of teeth in Japanese Children. Am J Phys Anthropol 1963; 21 :569-74.

Lai PY, Seow WK. A controlled study of the association of various dental anomalies with hypodontia of permanent teeth. Pediatr Dent 1989; 11: 291-6.

Salem G. Prevalence of selected dental anomalies in Saudi children from Gizan region. Community Dent Oral Epiodemiol 1989; 17: 162-3.

den Dunnen JT, Antonarakis SE. Mutation Nomenclature Extensions and Suggestions to Describe Complex Mutations: A Dissussion. Hum Mut 2000; 15: 7-12.

Downloads

Published

2015-11-18

How to Cite

1.
Pemberton TJ, Das P, Patel PI. Hypodontia: genetics and future Hypodontia: genetics and future perspectives. Braz. J. Oral Sci. [Internet]. 2015 Nov. 18 [cited 2022 Nov. 28];4(13):695-706. Available from: https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8641817

Issue

Section

Literature Reviews