Banner Portal
An approach to the dynamics of scientific and technological development of lithium-ion batteries for electric vehicles
PDF (Português (Brasil))
PDF Acesso via SciELO (Português (Brasil))

Keywords

Lithium-ion batteries
Electric vehicles
Patent analysis
Bibliometric analysis

How to Cite

BERMÚDEZ -RODRÍGUEZ, Tatiana; CONSONI, Flavia Luciane. An approach to the dynamics of scientific and technological development of lithium-ion batteries for electric vehicles. Revista Brasileira de Inovação, Campinas, SP, v. 19, p. e0200014, 2020. DOI: 10.20396/rbi.v19i0.8658394. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/rbi/article/view/8658394. Acesso em: 6 jul. 2024.

Abstract

The main component of Electric Vehicles (VE) is the battery. Lithium-ion batteries have offered the best performance to different technological problems, such as recharge time, autonomy, weight, and energy density. Then, the raised question is what has been their scientific and technological development over time. This paper aims to understand this issue from a bibliometric study and patent analysis of lithium-ion batteries for VE. The results indicate that the dynamics of publication of papers and patent families have been increasing, especially since 2009, motivated by environmental concerns and the interest of companies in the growth of this market. It highlights the leadership of Asian countries such as Japan, China, South Korea, and Taiwan, as well as the United States and some European countries, in the publication of both papers and patents. Finally, we highlight the collaborative networks between universities for the publication of papers and between incumbent car companies and electric-electronic companies for patenting. These networks demonstrate the need for articulation between different areas of knowledge to advance the technological development of lithium-ion batteries.

https://doi.org/10.20396/rbi.v19i0.8658394
PDF (Português (Brasil))
PDF Acesso via SciELO (Português (Brasil))

References

ALBINO, V.; ARDITO, L.; DANGELICO, R.; PETRUZZELLI, A. Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, v. 135, 2014.

BARBERÁ-TOMÁS, D.; JIMÉNEZ-SÁEZ, F.; CASTELLÓ-MOLINA, I. Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks. Research Policy, v. 40, n. 3, p. 473-486, 2011.

BOSCH. Bosch expands development and production of efficient storage technology, 13 Dec. 2012. Disponível em: http://www.bosch-presse.de/pressportal/de/en/bosch-expands-developmentand-production-of-efficient-storage-technology-42035.html. Acesso em: 6 fev. 2018.

BOSH. Bosch has groundbreaking battery technology for electric vehicles, 2016. Disponível em: https://www.bosch-presse.de/pressportal/de/en/bosch-has-groundbreaking-batterytechnology-for-electric vehicles-43063.html. Acesso em: 5 fev. 2018.

BOSTON CONSULTING GROUP (BCG). The Future of Battery Production for Electric Vehicles. Boston, 2018. Disponível em: https://www.bcg.com/publications/2018/futurebattery-production-electric-vehicles.aspx. Acesso em: 20 jan. 2020.

CASTRO, B.H.R.; BARROS, D.C.; VEIGA, S.G. Baterias automotivas: panorama da indústria no Brasil, as novas tecnologias e como os veículos elétricos podem transformar o mercado global. BNDES Setorial, v. 37, p. 443-496, 2013.

COMMISSARIAT À L’ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES (CEA). Lithium-Ion Batteries: Promising Greater Energy Efficiency for Transportation, 2018. Disponível em: http://liten.cea.fr/cea-tech/liten/en/Pages/techno Energy Efficiency/LiionBatteries.aspx. Acesso em: 20 jan. 2020.

CHESBROUGH, H.W. The Era of Open Innovation. MIT Sloan Management Review, p. 35-42, 15 Apr. 2003.

CHRISTENSEN, C.M. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail. Boston, MA: Harvard Business School Press, 1997.

CONSONI, F.L. et al. Estudo de governança e políticas públicas para veículos elétricos. Brasília D.F: Ministério da Indústria, Comercio Exterior e Serviços MDIC, 2018.

DAIM, T.U.; RUEDA, G.; MARTIN, H.; GERDSRI, P. Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting & Social Change, v. 73, n. 8, p. 981-1012, 2006.

DIJK, M.; ORSATO, R.J.; KEMP, R. The emergence of an electric mobility trajectory. Energy Policy, v. 52, p. 135-145, 2013.

ERNST, H. The Use of Patent Data for Technological Forecasting: The Diffusion of CNCTechnology in the Machine Tool Industry. Small Business Economics, v. 9, n. 4, p. 361-381, 1997.

FARIA, L.; ANDERSEN, M.M. The evolution of green patenting activity in the automotive sector (1965-2012). In: GERPISA INTERNATIONAL COLLOQUIUM, 23., Paris. Anais [...]. Paris: 2015.

GAO, L. et al. Technology life cycle analysis method based on patent documents. Technological Forecasting & Social Change, v. 80, n. 3, p. 398-407, 2013.

GEELS, F.W. The dynamics of transitions in socio-technical systems: A multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860-1930). Technology Analysis and Strategic Management, v. 17, n. 4, p. 445-476, 2005.

GENERAL ELECTRIC GLOBAL RESEARCH. A Recipe for Powering Next-Generation Electric Vehicles. 2016. Disponível em: https://www.geglobalresearch.com/blog/recipepowering-next-generation-electric-vehicles. Acesso em: 6 fev. 2018.

GOLDIE-SCOT, L. A Behind the Scenes Take on Lithium-ion Battery Prices. Bloomberg NEF, Blog, 5 Mar. 2019. Disponível em: https://about.bnef.com/blog/behind-scenes-takelithium-ion-battery-prices/. Acesso em: 20 jan. 2020.

GOLEMBIEWSKI, B.; STEIN, N.; SICK, N.; WIEMHÖFER, H.-D. Identifying trends in battery technologies with regard to electric mobility: Evidence from patenting activities along and across the battery value chain. Journal of Cleaner Production, v. 87, n. C, p. 800-810, 2015.

INTERNATIONAL ENERGY AGENCY (IEA). Hybrid and Electric Vehicles. The Electric Drive AdvancesAnnual Report. [s.l: s.n.].

INTERNATIONAL ENERGY AGENCY (IEA). Global EV Outlook. Understanding the Electric Vehicle Landscape to 2020, Apr. 2013. Disponível em: https://www.ourenergypolicy.org/wp-content/uploads/2013/09/GlobalEVOutlook_2013.pdf. Acesso em: 7 fev.2018.

INTERNATIONAL ENERGY AGENCY (IEA). Global EV Outlook 2017. Two million and counting, 2017. Disponível em: http://www.oecd-ilibrary.org/energy/global-ev-outlook2017_9789264278882-en. Acesso em: 15 set. 2018.

INTERNATIONAL ENERGY AGENCY (IEA). Global EV Outlook 2018. Towards crossmodal electrification, 2018. Disponível em: https://www.oecd-ilibrary.org/energy/global-evoutlook-2018_9789264302365-en. Acesso em: 20 out. 2018.

INTERNATIONAL ENERGY AGENCY (IEA). Global EV Outlook 2019. Scaling-up the transitions to electric mobility, 2019. Disponível em: https://www.iea.org/publications/reports/globalevoutlook2019/. Acesso em: 20 jul. 2019.

INTERNATIONAL ENERGY AGENCY (IEA). Global EV Outlook 2020.Entering the decade of electric drive?, 2020. Disponível em: https://www.iea.org/publications/reports/globalevoutlook2020/. Acesso em: 05 jun. 2019.

INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL (INPI). Estratégia de busca. Importância do uso estratégico da informação tecnológica em bases de patentes. In: ENAPID, 8., Rio de Janeiro. Anais [...]. Rio de Janeiro: 2015. (Mini-curso do Enapid).

JAFFE, A.B.; TRAJTENBERG, M. Patents, citations and innovations: A window on the knowledge economy. Cambrigde; Massachusetts: MIT Press, 2002.

KASSATLY, S. The Lithium-Ion Battery Industry for Electric Vehicles. Thesis (S.M.) – Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.

LAMBERT, F. Daimler stops developing internal combustion engines to focus on electric cars. Electrek, 19 Sept. 2019. Disponível em: https://electrek.co/2019/09/19/daimler-stopsdeveloping-internal-combustion-engines-to-focus-on-electric-cars/. Acesso em: 12 fev. 2020.

LI, L.; GE, X.; ZHAN, Y. Development of Electric Vehicles: Opportunities and Challenges for Power Grid Companies. In: 2012 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED 2012). Shanghai, 2012, p. 1-7. doi: 10.1109/CICED.2012.6508460.

LUTSEY, N.; NICHOLAS, M. Update on electric vehicle costs in the United States through 2030. International Council on Clean Transportation (ICCT), 2019. (Working Paper, 2019-06). Disponível em: https://theicct.org/sites/default/files/publications/EV_cost_2020_2030_20190401.pdf.

MCKINSEY. Electrifying insights: How automakers can drive electrified vehicle sales and profitability. Advanced Industries. New York: McKinsey & Company, 2017.

MUELLER, S.C.; SANDNER, P.G.; WELPE, I.M. Monitoring innovation in electrochemical energy storage technologies: A patent-based approach. Applied Energy, v. 137(C), p. 537-544, 2015. DOI: 10.1016/j.apenergy.2014.06.082.

NAVIGANT RESEARCH. Lithium Ion Batteries for Transportation, 2015. Disponível em: https://www.navigantresearch.com/ research/navigant-research-leaderboard-report-lithiumion-batteries-for-transportation. Acesso em: 17 set. 2018.

NYKVIST, B.; NILSSON, M. Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, v. 5, n. 4, p. 329-332, 2015.

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD). OECD Patent Statistics Manual. [s.l: s.n.].

OICA. Sales Statistics | OICA. International Organization of Motor Vehicle Manufacturers, 2018. Disponível em: http://www.oica.net/category/sales-statistics/. Acesso em: 11 set. 2018.

PRICE, D.J.D.S. Little Science, Big Science ...and Beyond. New York: Columbia University Press, 1976.

RANDALL, T. Here’s How Electric Cars Will Cause the Next Oil Crisis. Bloomberg NEF, 25 Feb. 2016. Disponível em: https://www.bloomberg.com/features/2016-ev-oil-crisis/. Acesso em: 5 nov. 2017.

SÁNCHEZ, M.; PALOP, F. Herramientas de software para la práctica en la empresa de la Vigilancia Tecnológica e Inteligencia Competitiva. Evaluación Comparativa. 1. ed. España: TRIZ, 2002.

SCHMOOKLER, J. Invention and economic growth. London: Harvard University Press, 1966.

SINO-GERMAN NETWORK ON ELECTROMOBILITY. TU9 Electromobility, 2016. Disponível em: http://www.sinogermanemobility.de/. Acesso em: 6 fev. 2018.

SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Overview of Schools, 2018. Disponível em: http://en.scut.edu.cn/detail.jsp?id=26883. Acesso em: 6 fev. 2018.

TEECE, D.J. Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research Policy, v. 15, p. 285-305, 1986.

TEECE, D.J. Tesla and the Reshaping of the Auto Industry. Management and Organization Review, v. 14, n. 3, p. 501-512, 2018.

TEECE, D.J. China and the reshaping of the auto industry: A dynamic capabilities perspective. Management and Organization Review, v. 15, n.1, p. 177- 199, 2019.

TEIXEIRA, R.D. O Estado e as empresas multinacionais no desenvolvimento produtivo e tecnológico da indústria automobilística chinesa. 2015. Dissertação (Mestrado em Política Científica e Tecnológica) – Instituto de Geociências, Universidade Estadual de Campinas Unicamp, Campinas, 2015.

TESLA. Panasonic and Tesla Sign Agreement for the Gigafactory, 30 July 2014. Disponível em: https://www.tesla.com/blog/panasonic-and-tesla-sign-agreement-gigafactory. Acesso em: 6 fev. 2018.

UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP); FRANKFURT SCHOOL. Global Trends in Renewable Energy Investment 2016. Frankfurt, 2016. Disponível em: https://www.actu-environnement.com/media/pdf/news-26477-rapport-pnue-enr.pdf. Acesso em: 25 set. 2018.

UTTERBACK, J. M.; ABERNATHY, W. J. A Dynamic Model of Process and Product Innovation. OMEGA, v. 3, n. 6, p. 639–65, 1975.

WATANABE, C.; TSUJI, Y.S.; GRIFFY-BROWN, C. Patent statistics: Deciphering a “real” versus a “pseudo” proxy of innovation. Technovation, v. 21, n. 12, p. 783-790, 2001.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 Revista Brasileira de Inovação

Downloads

Download data is not yet available.