Banner Portal
Respostas do treinamento intervalado aeróbio de corrida na melhoria da capacidade de absorção de oxigênio (vo2max), na saúde e no desempenho
PDF

Palavras-chave

Treinamento intervalado
Corrida
Composição corporal
Economia de corrida

Como Citar

SA, Matheus Cavalcante de. Respostas do treinamento intervalado aeróbio de corrida na melhoria da capacidade de absorção de oxigênio (vo2max), na saúde e no desempenho. Conexões, Campinas, SP, v. 12, n. 1, p. 142–160, 2014. DOI: 10.20396/conex.v12i1.2185. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/conexoes/article/view/2185. Acesso em: 26 abr. 2024.

Resumo

Diversos estudos procuram mensurar os efeitos do treinamento intervalado aeróbio de corrida (TI) na melhora da capacidade de absorção de oxigênio (VO2max), correlacionando-os com melhorias na saúde (composição corporal) e no desempenho atlético (economia de corrida), uma vez que diversas variáveis podem influenciar a resposta ao treinamento, como intensidade, volume, duração e intervalo de recuperação. Neste sentido, o objetivo deste estudo foi revisar sistematicamente a literatura, relacionando as principais variáveis da prescrição de TI e seus efeitos. Das evidências relatadas nesta revisão, pode-se concluir que o TI é estudado na literatura há vários anos, sem, contudo, haver um consenso quanto à prescrição de intensidade, volume e recuperação para os mais diferentes tipos de populações. Seus efeitos positivos no VO2max, composição corporal e economia de corrida, entretanto, são consensuais na maioria dos estudos.

https://doi.org/10.20396/conex.v12i1.2185
PDF

Referências

BILLAT, V. L. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Medicine, Auckland, v. 31, n. 1, p. 13-31, 2001.

REINDELL, H.; ROSKAMM, H. Ein Beitrag zu den physiologischen Grundlagen des Interval training unter besonderer Berick siehtigung des Kreilaufes. Schweiz Z Sportmed, v. 7, p. 1-8, 1959.

WASSERMAN, K.; MCILROY, M. B. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. American Journal of Cardiology, New York, v. 14, p. 844-852, 1964.

BILLAT, V. L. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Medicine, Auckland, v. 22, n. 3, p. 157-175, 1996.

ESSEN, B. Glycogen depletion of different fibre types in human skeletal muscle during intermittent and continuous exercise. Acta Physiologica Scandinavica, Oxford, v. 103, n. 4, p. 446-455, 1978.

SILVA, A. S. Efeito do exercício intervalado na capacidade aeróbia, composição corporal e na população obesa: uma revisão baseada em evidências. Motriz, Rio Claro, v. 16, n. 2, p. 468-476, 2010.

BILLAT, V. L. et al. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. European Journal of Applied Physiology, Heidelberg, v. 81, n. 3, p. 188-196, 2000.

GEORGIOU, D. et al. Cost-effectiveness analysis of long-term moderate exercise training in chronic heart failure. American Journal of Cardiology, New York, v. 87, n. 8, p. 984-988, 2001.

MAKRIDES L, HEIGENHAUSER, G. J.; JONES, N. L. High-intensity endurance training in 20- to 30- and 60- to 70-yr-old healthy men. Journal of Applied Physiology, Bethsda, v. 69, n. 5, p. 1792-1798, 1990.

TJONNA, A. E. et al. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clinical Science, London, v. 116, n. 4, p. 317-326, 2009.

SALTIN, B.; ASTRAND, P. O. Maximal oxygen uptake in athletes. Journal of Applied Physiology, Bethsda, v. 23, n. 3, p. 353-358, 1967.

HELGERUD, J.; HOYDAL, K.; WANG, E.; KARLSEN, T.; BERG, P.; BJERKAAS, M. et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine & Science in Sports & Exercise, Hagerstown, v. 39, n. 4, p. 665-671, 2007.

THEVENET, D. et al. Influence of recovery intensity on time spent at maximal oxygen uptake during an intermittent session in young, endurance-trained athletes. Journal of Sports Science & Medicine, New York, v. 26, n. 12, p. 1313-1321, 2008.

THEVENET, D. et al. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. European Journal of Applied Physiology, Heidelberg, v. 102, n. 1, p. 19-26, 2007.

THEVENET, D. et al. Influence of recovery mode (passive vs. active) on time spent at maximal oxygen uptake during an intermittent session in young and endurance-trained athletes. European Journal of Applied Physiology, Heidelberg, v. 99, n. 2, p. 133-142, 2007.

MORTON, R. H.; BILLAT, V. Maximal endurance time at VO2max. Medicine & Science in Sports & Exercise, Hagerstown, v. 32, n. 8, p. 1496-1504, 2000.

ROGNMO, O. et al. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European Journal of Cardiovascular Prevention & Rehabilitation, Heidelberg, v. 11, n. 3, p. 216-222, 2004.

DENADAI, B. S. et al. Interval training at 95% and 100% of the velocity at VO2 max: effects on aerobic physiological indexes and running performance. Applied Physiology Nutrition and Metabolism, Canada, v. 31, n. 6, p. 737-743, 2006.

BILLAT, V. L, et al. Interval training at VO2max: effects on aerobic performance and overtraining markers. Medicine & Science in Sports & Exercise, Hagerstown, v. 31, n. 1, p. 156-163, 1999.

SMITH, T. P.; COOMBES, J. S.; GERAGHTY, D. P. Optimising high-intensity treadmill training using the running speed at maximal O(2) uptake and the time for which this can be maintained. European Journal of Applied Physiology, Heidelberg v. 89, n. 3-4, p. 337-343, 2003.

ESFARJANI, F.; LAURSEN, P. B. Manipulating high-intensity interval training: effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. Journal of Sports Science & Medicine, New York, v. 10, n. 1, p. 27-35, 2007.

O'DONOVAN, G. et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. Journal of Applied Physiology, Bethsda, v. 98, n. 5, p. 1619-1625, 2005.

WEN,H.; GAO, Y.; AN, J. Y. Comparison of high-intensity and anaerobic threshold programs in rehabilitation for patients with moderate to severe chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi, China, v. 31, n. 8, p. 571-576, 2008.

HUNTER, G. R. et al. A role for high intensity exercise on energy balance and weight control. International Journal of Obessity, Lodon, v. 22, n. 6, p. 489-493, 1998.

TREUTH, M. S.; HUNTER, G. R.; WILLIAMS, M. Effects of exercise intensity on 24-h energy expenditure and substrate oxidation. Medicine & Science in Sports & Exercise, Hagerstown, v. 28, n. 9, p. 1138-1143, 1996.

MASCARENHAS, L. P. G. et al. Efeitos de duas intensidades de treinamento aeróbio na composição corporal e na potência aeróbia e anaeróbia de meninos pré-púberes. Revista Brasileira de Educação Física e Esporte, São Paulo, v. 22, n. 1, p. 81-89, 2008.

MALINA, R. M.; BOUCHARD, C. Atividade física do atleta jovem: do crescimento à maturação. São Paulo: Roca, 2002.

JOHNSON, M. S. et al. Aerobic fitness, not energy expenditure, influences subsequent increase in adiposity in black and white children. Pediatrics, New York, v. 106, n. 4, p. 50, 2000.

FERNANDEZ, A. C. et al. Influência do treinamento aeróbio e anaeróbio na massa de gordura de adolescentes obesos. Revista Brasileira de Medicina do Esporte, São Paulo, v. 10, n. 3, p. 152-158, 2004.

TALANIAN, J. L. et al. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, Bethsda, v. 102, n. 4, p. 1439-1447, 2007.

DANIELS, J. T. A physiologist's view of running economy. Medicine & Science in Sports & Exercise, Hagerstown, v. 17, n. 3, p. 332-338, 1985.

BUNC, V.; HELLER, J. Energy cost of running in similarly trained men and women. Journal of Applied Physiology, Bethsda, v. 59, n. 3, p. 178-183, 1989.

HELGERUD, J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Journal of Applied Physiology, Bethsda, v. 68, n. 2, p. 155-161, 1994.

HELGERUD, J. et al. Aerobic endurance training improves soccer performance. Medicine & Science in Sports & Exercise, Hagerstown, v. 33, n. 11, p. 1925-1931, 2001.

PATE, R. R.; KRISKA, A. Physiological basis of the sex difference in cardiorespiratory endurance. Sports Medicine, Auckland, v. 1, n. 2, p. 87-98, 1984.

DENADAI, B. S. Índices fisológicos de avaliação aeróbia: conceitos e aplicações. Ribeirão Preto: BSD, 1999.

ORTIZ, M. J. et al. Efeitos do treinamento aeróbio de alta intensidade sobre a economia de corrida em atletas de endurance. Revista Brasileira de Ciência e Movimento, Brasília, v. 11, n. 3, p. 53-56, 2003.

SEILER, S.; SJURSEN, J. E. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scandinavian Journal of Medicine & Science in Sports, Copenhagen, v. 14, n. 5, p. 318-325, 2004.

SEILER, S.; HETLELID, K. J. The impact of rest duration on work intensity and RPE during interval training. Medicine & Science in Sports & Exercise, Hagerstown, v. 37, n. 9, p. 1601-1607, 2005.

HARRIS, R. C. et al. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch, Berlin, v. 367, n. 2, p. 137-142, 1976.

TAYLOR, D. J. et al. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Journal of Molecular Medicine, Berlin, v. 1, n. 1, p. 77-94, 1983.

VERBURG, E. et al. Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump? Acta Physiologica Scandinavica, Oxford, v. 165, n. 4, p. 357-367, 1999.

METZGER, J. M.; FITTS, R. H. Role of intracellular pH in muscle fatigue. Journal of Applied Physiology, Bethsda,, v. 62, n. 4, p. 1392-1397, 1987.

OOSTHUYSE, T.; CARTER, R. N. Plasma lactate decline during passive recovery from high-intensity exercise. Medicine & Science in Sports & Exercise, Hagerstown, v. 31, n. 5, p. 670-674, 1999.

PAN, J. W. et al. Correlation of lactate and pH in human skeletal muscle after exercise by 1H NMR. Magnetic Resonance in Medicine, v. 20, n. 1, p. 57-65, 1991.

ROZENEK, R. et al. Physiological responses to interval training sessions at velocities associated with VO2max. Journal of Strength & Conditioning Research, v. 21, n. 1, p. 188-192, 2007.

FRANCH, J. et al. Improved running economy following intensified training correlates with reduced ventilatory demands. Medicine & Science in Sports & Exercise, Hagerstown, v. 30, n. 8, p. 1250-1256, 1998.

MILLET, G. P.; CANDAU, R.; FATTORI, P.; BIGNET, F.; VARRAY, A. VO2 responses to different intermittent runs at velocity associated with VO2max. Canadian Journal of Applied Physiology, Champaign, v. 28, n. 3, p. 410-423, 2003.

O periódico Conexões: Educação Física, Esporte e Saúde utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Downloads

Não há dados estatísticos.