Banner Portal
Adaptações neuromusculares ao exercício físico: síntese de uma abrangente temática
PDF

Palavras-chave

Músculo esquelético. Exercício físico. Adaptações Neuromusculares.

Como Citar

MEDEIROS, Rômulo José Dantas; SOUZA, Maria do Socorro Cirilo de. Adaptações neuromusculares ao exercício físico: síntese de uma abrangente temática. Conexões, Campinas, SP, v. 7, n. 1, p. 98–120, 2009. DOI: 10.20396/conex.v7i1.8637788. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/conexoes/article/view/8637788. Acesso em: 8 out. 2024.

Resumo

O músculo esquelético humano é um maleável tecido orgânico que apresenta como principal característica uma eximia capacidade adaptativa neurofisiológica, metabólica e morfológica, que se expressa diante de estímulos advindos do exercício físico. No âmbito do treinamento físico, podem-se destacar as atividades de caráter aeróbio, que promovem o aperfeiçoamento funcional das fibras de contração lenta (TIPO IA), por meio do aprimoramento da capacidade respiratória das mitocôndrias, viabilizado pelo aumento do número e tamanho destas; anaeróbio, que tem os incrementos de força, potência e a ocorrência da hipertrofia muscular como suas principais respostas representantes; e o treinamento concorrente, que ao integrar os dois citados treinos em um mesmo plano regular de exercício físico, promove respostas adaptativas de menor amplitude quando comparadas às possibilitadas pelos referidos realizados isoladamente. Em adição, evidencia-se que na atualidade a biologia molecular se encontra como uma importante ferramenta para o estudo das respostas adaptativas neuromusculares, onde o conhecimento da relação estímulo físico, expressão gênica e formação e proliferação celular, concretiza-se como a base que fundamenta os procedimentos desta área.
https://doi.org/10.20396/conex.v7i1.8637788
PDF

Referências

ALENGHAT, F. J.; INGBER, D. E. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Science’s STKE, v. 119, p. PE6, 2002.

ANDERSON, J; PILIPOWICZ, O. Activation of muscle satellite cells in single-Wber cultures. Nitric

Oxide. v. 7, p. 36–41, 2002.

ASCHENBACH, W. G; SAKAMOTO, K. Goodyear LJ. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Medicine. v. 3, n. 2, p: 91-103, 2004.

BACURAU, R. F; NAVARO, F. Hipertrofia e hiperplasia: fisiologia, nutrição e treinamento. São Paulo: Phorte, 2001.

BAR, K. Training for endurance and strength: lesson from cell signaling. Medicine and Science in Sports. and Exercis, . v. 38, n. 11, p. 1939-1944, 2006.

BARNETT, C.; CAREY, M; PROIETTO, J; CERIN, E; FEBBRAIO, M. A; JENKINS, D. Muscle metabolism during sprint exercise in man: influence of sprint training. Journal of Science and Medicine Sport. v. 7, n. 3, p. 314-322, 2004.

BLAZEVICH, A. J.; GILL, N. D.; BRONKS, R.; NEWTON, R. U. Training-specific muscle architecture adaptation after 5-wk training in athletes. Medicine and Science in Sports and Exercise, v. 35, n. 12, p. 2013-22, 2003.

BOOTH, F. W. Application of molecular biology in exercise physiology. Exercise and Sport Sciences Reviews, v. 17, p. 1-27, 1988.

BURGOMASTER, K. A. et al. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine and Science Sports and Exercise, v. 35, n. 7, p. 1203-1208, 2003.

BURGOMASTER, K. A.; HEIGENHAUSER, G. J. F.; GIBALA, M. J. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time trial performance. Journal of Applied Physiology, v. 100, p. 2041-2047, 2006.

BURGOMASTER, K. A. et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology. v. 586, p. 151-160, 2008.

BURKE, L. M.; HAWLEY, J. A. Fat and carbohydrate for exercise. Current Opinion in Clinical Nutrition and Metabolic Care. v. 9, n. 4, p. 476-481, 2006.

CAMPOS, G. E. et al. Muscular adaptations in response to three different resistance-training regimes: specificity of repetition maximum training zones. European Journal of Applied Physiology. v. 88, n. 1-2, p. 50-60, 2002.

CHIN, E. R. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. Journal of Applied Physiology, v. 99, n. 2, p. 414-423, 2005.

COFFEY, V. G.; HAWLEY, J. A. The molecular bases of training adaptation. Sports Medicine. v. 37, n. 9, p. 737-763, 2007.

COSTIL, D. L. et al., G. Skeletal muscle enzymes and fiber composition in male and female track athletes. Journal of Applied Physiology, v. 40, p. 149-154, 1976.

DAWSON, B. et al. Changes in performance, muscle metabolites, enzymes and fiber types after short sprint training. European Journal of Applied Physiology and Occupational Physiology. v. 78, n. 2, p. 163-169, 1998.

DURANTE, P. E. et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. American Journal of Physiology, Endocrinology and metabolism. v. 283, p. 178-186, 2002.

FINK, W. J.; COSTILL, D. L.; POLLOCK, M. L. Submaximal and maximal working capacity of elite distance runners. Part II: muscle fiber composition and enzyme activities. Annals of the New York Academy of Sciences, v. 301, p. 323-327, 1977.

FLECK, S. J.; KRAEMER, W. J. Fundamentos do treinamento de força muscular. 2. ed. São Paulo: Artmed, 1999.

FOLLAND, J. P.; WILLIAMS, A. G. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Medicine, v. 37, n. 2, 2007.

FRY, A. C. et al. Muscle fiber characteristics of competitive power lifters. Journal of Strength and Conditioning Research. v. 17, n. 2, p. 402-410, 2003.

GABRIEL, D. A.; KAMEN, G.; FROST. G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Medicine. v. 36, n. 2, p. 133-149, 2006.

GREIWE, J. S.; HOLLOSKY. J. O.; SEMENKOVICH, C. F. Exercise induces lipoprotein lipase and glut-4 protein in muscle independent of adrenergic-receptor signaling. Journal of Applied Physiology, v. 89, n. 1, p. 176-181, 2000.

HAWLEY, J. A. Adaptations of skeletal muscle to prolonged and intense endurance training. Clinical and Experimental Pharmacology and Physiology, v. 29, n. 3, p. 218-222, 2002.

HAWLEY, J. A.; SPARGO, F. J. Metabolic adaptations to marathon training and racing. Sports Medicine, v. 37, n. 4-5, p. 328-331, 2007.

HARDIE, D. G.; SAKAMOTO, K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology, v. 21, p. 48-60, 2006.

HELLSTEN-WESTING, Y.; BALSOM, P. D.; NORMAN, B.; SJODIN, B. The effect of high intensity training on purine metabolism man. Acta Physiologica Scandinavian, v. 149, p. 405-412, 1993.

HEPPLE, R. T. Skeletal muscle: microcirculatory adaptation to metabolic demand. Medicine and Science in Sports and Exercise, v. 32, p. 17-123, 2000.

HICKSON, R. C. Interference of strength development by simultaneously training for strength and endurance. European Journal of Applied Physiology. Occupational Physiology, v. 45, p. 255-263, 1980.

HOOD, D. A.; IRRCHER, I.; LJUBICIC, V.; JOSEPH, A. Review: Coordination of metabolic plasticity in skeletal muscle. Journal of Experimental Biology, v. 209, p. 2265-2272, 2006.

HUBAL, M. J. et al. Variability in muscle size and strength gain after unilateral resistance training. Medicine and Science in Sports and Exercise, v. 37, n. 6, p. 964-972, 2005.

INBAR, O.; KAISER, P.; TESCH, P. Relationships between leg muscle fiber type distribution and leg exercise performance. International Journal of Sports Medicine, v. 2, n. 3, p. 154-159, 1981.

JINDRA, M. et al. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. The EMBO Journal, v. 23, n. 17, p. 3538-3547, 2004.

JORGENSEN, S. B; RICHTER, E. A; WOJTASZEWSKI, J. F. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. Journal of Physiology, v. 574 (Pt 1), p. 17-31, 2006.

KALAPOTHARAKOS, V. et al.The effect of moderate resistance strength training and detraining on muscle strength and power in older men. Journal of Geriatric Physical Therapy, v. 30, n. 3, p. 109-13, 2007.

KUBO, K; KANEHISA, H; FUKUNAGA, T. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. Journal of Physiology, v. 538, p. 219-226, 2002.

LAI, K. M. et al. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Molecular and Cellular Biology. v. 24, n. 21, p. 9295-9304, 2004.

LANGEN, R. C. et al. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. The FASEB Journal, v. 18, n. 2, p. 227-237, 2004.

LEE, W. J. et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochemical and Biophysical Research Communications, v. 240, n. 1, p. 291-295, 2006.

Li, J. L. et al. Effects of fatigue and training on sarcoplasmic reticulum Ca(2+) regulation in human skeletal muscle. Journal of Applied Physiology, v. 92, n. 3, p. 912-922, 2002.

LINOSSIER, M. T. et al. Ergometric and metabolic adaptations to a 5 s sprint training program. European Journal of Applied Physiology, v. 68, p. 408-414, 1993.

MARQUES, M. C.; GONZÁLEZ-BADILHO, J. J. In-season resistance training and detraining in professional team handball players. Journal of Strength and Conditioning Research, v. 20, n. 3, p. 563-571, 2006.

MACDOUGALL, J. D. et al. Biochemical adaptation of human skeletal muscle to heavy resistance training and immobilization. Journal of Applied Physiology. V. 43, n.4, p. 700-3, 1977.

MACDOUGALL, J. D. et al. DMuscle fiber number in biceps brachii in bodybuilders and control subjects. Journal of Physiology, v. 57, n. 5, p. 1399-1403, 1984.

MCARDLE, W. D.; KATCH, F. I.; KATCH, V. L. Fisiologia do exercício energia, nutrição e desempenho humano. 5aed. Rio de Janeiro: Guanabara Koogan, 2003.

MATHIEU-COSTELLO, O.; HEPPLE, R. T. Muscle structural capacity for oxygen flux from capillary to fiber mitochondria. Exercise and Sports Sciences Reviews, v. 30, n. 2, p. 80-84, 2002.

MICHEL, R. N.; DUNN, S. E.; CHIN, E. R. Calcineurin and skeletal muscle growth. The Proceedings of Nutrition Society, v. 63, n. 2, p. 241-349, 2004.

NADER, G. A.; MCLOUGHLIN, T. J.; ESSER, K. A. motor function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. American Journal of Physiology. Cell Physiology, v. 289, n. 6, p. 1457-1465, 2004.

NADER, G. A. Concurrent strength and endurance training: from molecules to man. Medicine and Science in Sports and Exercise, v. 38, n. 11, 2006.

ORTENBLAD, N. et al. Enhanced sarcoplasmic reticulum Ca (2+) release following intermittent sprint training. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, v. 279, n. 1, p. 152-160, 2000.

PARRA, J. et al. The distribution of rest periods affects performance and adaptations of energy

metabolism induced by high-intensity training in human muscle. Acta Physiologica Scandinavian, v. 169, p. 157-65, 2000.

PETTE, D. The adaptive potential of skeletal muscle fibers. Canadian Journal of Applied Physiology, v. 27, n. 4, p. 423-448, 2002.

PHILLIPS, S. M. Resistance exercise: good for more than just Grandma and Grandpa’s muscles. Applied Physiology, Nutrition and Metabolism, v. 32, n. 6, p. 1198-1205, 2007.

REEVES, N. D.; MAGANARIS, C. N.; NARICI, M. V. Effect of strength training on human patella

tendon mechanical properties o folder individuals. Journal of Physiology, v. 548, p. 971-981, 2003.

ROCKL, K. S. C; WITCZAK, C. A; GOODYEAR, L. J. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life, v. 60, n. 3, p. 145-153, 2008.

ROSE, A. J.; KIENS, B.; RICHTER, E. A. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. Journal of Physiology, v 574, p. 889-903, 2006. pt.3

ROSS, A.; LEVERITT, M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Medicine, v. 31, n. 15, p. 1063-1082, 2001.

ROSS, A.; LEVERITT, M.; RICK, S. Neural influences on sprint running: training adaptations and acute responses. Sports Medicine, v. 31, n. 6, p. 409-245, 2001.

SALTIN, B.; WAHREN, J.; PERNOW, B. Phosphagen and carbohydrate metabolism during exercise in trained middle-aged men. Scandinavian Journal of Clinical and Laboratory Investigation, v. 33, n. 1, p. 71-77, 1974.

SALTIN, B. et al. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Annals of the New York Academy of Sciences, v. 301, p. 3-44, 1977.

SERGER, J. Y.; THORSTENSSON, A. Effects of eccentric versus concentric training on thigh muscle strength and EMG. International Journal of Sports and Medicine, v. 26, p. 45-52, 2005.

TAKARADA, Y. et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of Applied PhysiolorResistance exercise with short inter-set rest period on mMuscular function in middle-aed women. Journal of Strength and Conditioning Research, v. 16, n. 1, p. 123-128, 2002.

TALMADGE, R. J. et al. Calcineurin activation influences muscle phenotype in a muscle-specific

fashion. BMC Cell Biology, v. 28, p. 5-28, 2004.

TANIGUCHI, C. M.; EMANUELLI, B.; KAHN, C. R. Critical nodes in signalling pathways: insights into insulin action. Nature Reviews: molecular cell biology, v. 7, n. 2, p. 85-96, 2006.

TATSUMI, R. et al. (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Molecular Biology of the Cell, v. 13, n. 8, p. 2909–2918, 2002.

TATSUMI, R.; ALLEN, R. E. Active hepatocyte growth factor is present in skeletal muscle extra cellular matrix. Muscle Nerve, v. 30, n. 5, p. 654-658, 2004.

THORTENSSON, A; SJODIN, B; KARLSSON, J. Enzyme activities and muscle strength after sprint training in man. Acta Physiologica Scandinavian. v. 94, p. 313-118, 1975.

VAN PRAAGH, E. Anaerobic fitness tests: what are we measuring? Medicine and Sports Science, v. 50, p. 26-45, 2007.

VASHISHT GOPAL, Y. N.; ARORA, T. S; VAN DYKE, M. W. Tumour necrosis factor-alpha depletes histone deacetylase 1 protein through IKK2. EMBO Reports, v. 7, n. 3, p. 291-296, 2006.

WEINECK, J. Treinamento ideal. São Paulo: Manole, 1999.

WILLIAMSON, D. L.; KIMBALL, S. R.; JEFFERSON, L. S. Acute treatment with TNF-α attenuantes insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism. American Journal of Applied Endocrinology and Metabolism, v. 289, p. 95-104, 2005.

WOZNIAK, A. C. et al. C-Met expression and mechanical my activation of satellite cells on cultured muscle Wbers. Journal of Histochemistry and Cytochemistry, v. 51, n. 11, p. 1437–1445, 2003.

ZATSIORSKY, V. M. Ciência e prática do treinamento de força. São Paulo: Phorte, 1999.

ZIERATH, J. R.; HAWLEY, J. A. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biology, v. 2, n. 10, p. 337-348, 2004.

O periódico Conexões: Educação Física, Esporte e Saúde utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Downloads

Não há dados estatísticos.