Banner Portal
Educação física e o fator neurotrófico derivado do cérebro (BDNF) na aprendizagem escolar
PDF

Palavras-chave

Educação física
Aprendizagem escolar
Atividade física

Como Citar

RAMOS, Jorge Marcos; GALDEANO, Denival Soares. Educação física e o fator neurotrófico derivado do cérebro (BDNF) na aprendizagem escolar: estudo de revisão sistemática. Conexões, Campinas, SP, v. 17, p. e019005, 2019. DOI: 10.20396/conex.v17i0.8651312. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/conexoes/article/view/8651312. Acesso em: 19 abr. 2024.

Resumo

Objetivo: O objetivo dessa pesquisa foi fazer uma revisão sistemática para verificar a relação do exercício físico e o BDNF na aprendizagem. Como objetivos específicos: verificar qual o tipo de exercício é mais indicado; intensidade; relação com o gênero e com a faixa etária e ainda o melhor momento para sua realização. Metodologia: A busca pelos documentos foi realizada nas bases de dados: PubMed, LILACS e Google Acadêmico. Foram considerados artigos de revisão, experim entais e dissertações (Doutorado e Mestrado) publicados nos últimos vinte anos (1996 – 2016), escritos em inglês, espanhol e português. Como critérios de inclusão testes realizados em seres humanos e em modelos animais; relacionando à prática de exercícios com o BDNF e a sua influência na aprendizagem. Como critérios de exclusão os documentos que não apresentaram dados como: gênero, idade, intensidade, número e tempo de cada sessão. Foram selecionados 120 documentos, restando somente 19, segundo os critérios de inclusão. Resultado e Discussão: As pesquisas em neurociências relacionadas à educação contribuem para o aprimoramento das práticas pedagógicas levando em conta as funções encefálicas e suas relações com a aprendizagem. O Fator Neurotrófico Derivado do Cérebro (BDNF) tem como função promover a sobrevivência dos neurônios. O exercício físico promoveu alterações positivas nas concentrações de BDNF estando relacionado à melhora do desempenho neurológico. Conclusão: O exercício aeróbio parece ser o mais indicado com intensidade vigorosa para o sexo masculino e a intensidade moderada para o feminino, as intervenções com tempo superiores há 20 minutos e com mais de uma sessão foram mais indicadas, contudo são necessárias novas pesquisas.

https://doi.org/10.20396/conex.v17i0.8651312
PDF

Referências

AICARDI, Giorgio et al. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, v. 101, n. 44, p. 15788-15792, 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15505222. Acesso em: 10 maio 2017.

AMARO, Kassandra Nunes. Intervenção motora para escolares com dificuldade de aprendizagem. 2010. 114 f. Dissertação (Mestrado em Ciências do Movimento Humano) - Centro de Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina, Florianópolis, 2010.

ARDOY, Daniel Navarro et al. A Physical education trial improves adolescents' cognitive performance and academic achievement: the EDUFIT study. Scandinavian Journal of Medicine & Cience in Sports, v. 24, n. 1, 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23826633. Acesso em: 11 maio 2017.

BARDE, Yves-Alain.; EDGAR, David.; THOENEN, Hans. Purification of a new neurotrophic factor from mammalian brain. The EMBO journal, v. 1, n. 5, p. 549-553, 1982. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC553086/. Acesso em: 10 maio 2017.

BAKSHI, Lisa. Will crossfit make american kids smarter?. CrossFit Journal, p. 1-4, 2008. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.577.3042&rep=rep1&type=pdf. Acesso em: 12 maio 2017.

BECK, Mikkel M. et al. Motor-enriched learning activities can improve mathematical performance in preadolescent children. Frontiers In Human Neuroscience, v. 10, n. 645, p. 1-14, 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179540/pdf/fnhum-10-00645.pdf. Acesso em: 12 maio 2017.

BEST, Phillip J.; WHITE, Aaron M.; MINAI, Ali. Spatial processing in the brain: the activity of hippocampal place cells. Annual Review of Neuroscience, v. 24, n. 1, p. 459-486, 2001. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/11283318. Acesso em: 13 maio 2017.

BROWN, Angus M.; TEKKÖK, Selva Baltan.; RANSOM, Bruce R. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochemistry International, v. 45, n. 4, p. 529-536, 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15186919. Acesso em: 13 maio 2017.

BUGG, Julie M.; HEAD, Denise. Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, v. 32, n. 3, p. 506-514, 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891908/pdf/nihms105902.pdf. Acesso em: 16 maio 2017.

BURGESS, Neil; MAGUIRE, Eleanor A.; O'KEEFE, John. The human hippocampus and spatial and episodic memory. Neuron, v. 35, n. 4, p. 625-641, 2002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/12194864. Acesso em: 12 maio 2017.

CASTELLI, Darla M. et al. Physical fitness and academic achievement in third-and fifth-grade students. Journal of Sport and Exercise Psychology, v. 29, n. 2, p. 239-252, 2007. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/17568069. Acesso em: 13 maio 2017.

CHADDOCK, Laura et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain research, v. 1358, p. 172-183, 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953557/. Acesso em: 10 maio 2017.

CHADDOCK, Laura. The effects of physical activity on the brain and cognition during childhood. 2013. Tese (Doutorado em Philosophy in Psychology) - University of Illinois, Champaign, 2013.

CHAN, Agnes Suiyin.; CHEUNG, Mei-Chun; SZE, Sophia. Effect of mind/body training on children with behavioral and learning problems: a randomized controlled study. Nova Science Publisher Inc, p. 1-30, 2008. Disponível em: http://neurolab347.pic6.eznetonline.com/upload/21_5qb0.pdf. Acesso em: 17 maio 2017.

CHOMITZ, Virginia R. et al. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. Journal of School Health, v. 79, n. 1, p. 30-37, 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19149783. Acesso em: 9 maio 2017.

DA SILVA, Cristiane Alves et al. A importância da avaliação motora em escolares. Revista Iberoamericana de Psicomotricidad y Técnicas Corporales, v. 7. n. 26, p. 137-146, 2007. Disponível em: http://www.motricidade.com.br/pdfs/edm/2007.4.pdf. Acesso em: 5 maio 2017.

DELLA-MAGGIORE, Valeria et al. Corticolimbic interactions associated with performance on a short-term memory task are modified by age. Journal of Neuroscience, v. 20, n. 22, p. 8410-8416, 2000. Disponível em: http://www.jneurosci.org/content/jneuro/20/22/8410.full.pdf. Acesso em: 02 maio 2017.

DE MORAES FERRARI, Gerson Luis et al. Associação da aptidão física e desempenho acadêmico de escolares. Revista Brasileira de Ciência e Movimento, v. 22, n. 4, p. 37-46, 2014. Disponível em: https://portalrevistas.ucb.br/index.php/RBCM/article/view/4954. Acesso em: 4 maio 2017.

DIAS, Marcela Brandão et al. Efeito de brincadeiras ativas sobre o desempenho escolar em crianças. Educação Física em Revista, v. 7, n. 1, 2013. Disponível em: https://portalrevistas.ucb.br/index.php/efr/article/view/3938. Acesso em: 4 maio 2017.

EPSTEIN, Meryl Heather. Coordinative aerobic exercise does not enhance attention and concentration in college students. 2011. Tese (Mestrado em Sciences in Health and Human Performance, Exercise Science) - University of Montana Missoula, Montana, 2011.

ERICKSON, Kirk I. et al. Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of USA, v. 108, n. 7, p. 3017-3022, 2011. Disponível em: http://www.pnas.org/content/108/7/3017. Acesso em: 10 maio 2017.

FIGUROV, Alexander et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, v. 381, n. 6584, p. 706, 1996. Disponível em: https://www.nature.com/articles/381706a0. Acesso em: 7 maio 2017.

FLINT, Jonathan. The genetic basis of cognition. Brain, v. 122, n. 11, p. 2015-2032, 1999. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/10545388. Acesso em: 6 maio 2017.

GUERRA, Leonor Bezerra; LOPES, Mariana Zaramela; PEREIRA, Alexandre Hatem. Neuroeduca - Inserção da neurobiologia na educação. In: CONGRESSO BRASILEIRO DE EXTENSÃO UNIVERSITÁRIA, 2., Belo Horizonte, 2004. Anais eletrônicos... Belo Horizonte: UFMG, 2004. Disponível em: https://www.ufmg.br/congrext/Educa/Educa113.pdf. Acesso em: 6 maio 2017.

HALVORSON, Aslynn Courtney. The impact of acute bouts of two types of physical activity on cognition in elementary school-aged children. 2014. Tese (Mestrado em Science) - University of Tennessee, Knoxville, 2014.

HILLMAN, Charles H.; ERICKSON, Kirk I.; KRAMER, Arthur F. Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews neuroscience, v. 9, n. 1, p. 58-65, 2008. Disponível em: https://www.nature.com/articles/nrn2298. Acesso em: 2 maio 2017.

HOF, Patrick R; MORRISON, John H. The aging brain: morphomolecular senescence of cortical circuits. Trends in Neurosciences, v. 27, n. 10, p. 607-613, 2004. Disponível em: https://www.sciencedirect.com/science/article/pii/S0166223604002413?via%3Dihub. Acesso em: 4 maio 2017.

HOPKINS, Michael E. et al. Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience, v. 215, p. 59-68, 2012. Disponível em: https://www.sciencedirect.com/science/article/pii/S0306452212004186?via%3Dihub. Acesso em: 8 maio 2017.

IZQUIERDO, Iván et al. Mechanisms for memory types differ. Nature, v. 393, p. 635-636, 1998. Disponível em: https://www.nature.com/articles/31371. Acesso em: 3 maio 2017.

KOMULAINEN, Pirjo et al. BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiology of Learning and Memory, v. 90, n. 4, p. 596-603, 2008. Disponível em: https://www.sciencedirect.com/science/article/pii/S1074742708001287?via%3Dihub. Acesso em: 7 maio 2017.

KNAEPEN, Kristel et al. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Medicine, v. 40, n. 9, p. 765-801, 2010. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/20726622. Acesso em: 2 maio 2017.

LABBAN, Jeffrey D.; ETNIER, Jennifer L. Effects of acute exercise on long-term memory. Research Quarterly For Exercise And Sport, v. 82, n. 4, p. 712-721, 2011. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/22276413. Acesso em: 16 maio 2017.

LISTA, Ilaria.; SORRENTINO, Giuseppe. Biological mechanisms of physical activity in preventing cognitive decline. Cellular and Molecular Neurobiology, v. 30, n. 4, p. 493-503, 2010. Disponível em: https://link.springer.com/article/10.1007%2Fs10571-009-9488-x. Acesso em: 7 maio 2017.

LÖRINCZ, András; BUZSÁKI, György. Two‐phase computational model training long‐term memories in the entorhinal‐hippocampal region. In: Annals of The New York Academy of Sciences, 2006, New York. Anal eletrônico… New York: NYAS. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/10911869. Acesso em: 9 maio 2017.

MORALES-MIRA, Marco; MAURICIO, Valenzuela-Harrington. Ejercicio físico: su rol en la neurogénesis inducida por bdnf y vegf exercise: your role in neurogenesis induced by bdnf and vegf. Revista Motricidad Humana, v. 15, n. 2, p. 134-142, 2014. Disponível em: https://www.revistamotricidad.com/wp-content/uploads/2015/03/134-142.pdf. Acesso em: 9 maio 2017.

MOTA, João et al. Atividade física e rendimento académico - uma revisão sistemática de sete revisões sistemáticas. Revista da Sociedade Científica de Pedagogia do Desporto, v. 1, n. 1, p. 24-29, 2015. Disponível em: http://rbafs.org.br/RBAFS/article/view/12120. Acesso em: 11 maio 2017.

PAN, Weihong. et al. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology, v. 37, n. 12, p. 1553-1561, 1998. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/9886678. Acesso em: 5 maio 2017.

PEDERSEN, Bente K. et al. Role of exercise‐induced brain‐derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Experimental Physiology, v. 94, n. 12, p. 1153-1160, 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19748969. Acesso em: 9 maio 2017.

POO, Mu-ming. Neurotrophins as synaptic modulators. Nature Reviews Neuroscience, v. 2, n. 1, p. 24-32, 2001. Disponível em: https://www.nature.com/articles/35049004. Acesso em: 19 maio 2017.

RASMUSSEN, Peter et al. Evidence for a release of brain‐derived neurotrophic factor from the brain during exercise. Experimental Physiology, v. 94, n. 10, p. 1062-1069, 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19666694. Acesso em: 8 maio 2017.

REED, Julian A. et al. Examining the impact of 45 minutes of daily physical education on cognitive ability, fitness performance, and body composition of African American youth. Journal of Physical Activity and Health, v. 10, n. 2, p. 185-197, 2013. Disponível em: https://journals.humankinetics.com/doi/10.1123/jpah.10.2.185. Acesso em: 9 maio 2017.

RUMAJOGEE, Prakasham et al. Adaption of the serotoninergic neuronal phenotype in the absence of 5‐HT autoreceptors or the 5‐HT transporter: involvement of BDNF and cAMP. European Journal of Neuroscience, v. 19, n. 4, p. 937-944, 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15009141. Acesso em: 9 maio 2017.

SEIFERT, Thomas et al. Endurance training enhances BDNF release from the human brain. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, v. 298, n. 2, p. 372-377, 2009. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19923361. Acesso em: 17 maio 2017.

SILVÉRIO, Gustavo Camargo; ROSAT, Renata Menezes. Memória de longo prazo: mecanismos neurofisiológicos de formação. Revista Médica de Minas Gerais, v.16, n. 4, p. 219-23, 2006. Disponível em: http://rmmg.org/artigo/detalhes/577. Acesso em: 17 maio 2017.

SO, Wi-Young. Association between physical activity and academic performance in Korean adolescent students. BMC Public Health, v. 12, n. 1, p. 258, 2012. Disponível em: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-258. Acesso em: 15 maio 2017.

SCHMIDT-KASSOW, Maren et al. Exercising during learning improves vocabulary acquisition: behavioral and ERP evidence. Neuroscience Letters, v. 482, n. 1, p. 40-44, 2010.

Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/20620190. Acesso em: 15 maio 2017.

SKRADE, Miriam Ann Blom. Integrated classroom physical activity: examining perceived need satisfaction and academic performance in children. 2013. Tese (Mestrado em Sciences) - Iowa State University, Iowa, 2013.

SKRIVER, Kasper et al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiology of Learning and Memory, v. 116, p. 46-58, 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/25128877. Acesso em: 7 maio 2017.

SPITZER, Ursula S; HOLLMANN, Wildor. Experimental observations of the effects of physical exercise on attention, academic and prosocial performance in school settings. Trends in Neuroscience and Education, v. 2, n. 1, p. 1-6, 2013. Disponível em: https://www.sciencedirect.com/science/article/pii/S2211949313000045. Acesso em: 08 maio 2017.

SZUHANY, Kristin L.; BUGATTI, Matteo.; OTTO, Michael W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of Psychiatric Research, v. 60, p. 56-64, 2015. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/25455510. Acesso em: 03 maio 2017.

TANAKA, Jun-Ichi et al. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science, v. 319, n. 5870, p. 1683-1687, 2008. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18309046. Acesso em: 17 maio 2017.

VAN DEN BERG, Vera et al. Physical activity in the school setting: cognitive performance is not affected by three different types of acute exercise. Frontiers in Psychology, v. 7, p. 723, 2016. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/27242629. Acesso em: 9 maio 2017.

ZHAO, Wei-Qin et al. Insulin and the insulin receptor in experimental models of learning and memory. European Journal of Pharmacology, v. 490, n. 1-3, p. 71-81, 2004. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15094074. Acesso em: 10 maio 2017.

WILLIAMS, Graham V.; RAO, Srinivas G.; GOLDMAN-RAKIC, Patricia S. The physiological role of 5-HT2A receptors in working memory. Journal of Neuroscience, v. 22, n. 7, p. 2843-2854, 2002. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/11923449. Acesso em: 10 maio 2017.

WINTER, Bernward et al. High impact running improves learning. Neurobiology of Learning and Memory, v. 87, n. 4, p. 597-609, 2007. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/17185007. Acesso em: 6 maio 2017.

WOOLF, Nancy J. et al. Elevation of nerve growth factor and antisense knockdown of TrkA receptor during contextual memory consolidation. Journal of Neuroscience, v. 21, n. 3, p. 1047-1055, 2001. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/11157090. Acesso em: 12 maio 2017.

O periódico Conexões: Educação Física, Esporte e Saúde utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Downloads

Não há dados estatísticos.