O uso de métodos de distribuição de impactos em ACVs de processos multifuncionais: uma revisão sistemática da literatura

Autores

  • Marcella Ruschi Mendes Saade Universidade de Campinas
  • Maristela Gomes da Silva Universidade Federal do Espírito Santo
  • Vanessa Gomes da Silva Universidade Estadual de Campinas

DOI:

https://doi.org/10.20396/parc.v8i4.8650295

Palavras-chave:

ACV. Alocação. Expansão de sistema. Subdivisão. Revisão sistemática da literatura.

Resumo

Uma questão controversa em ACV é a escolha do método de distribuição de impactos nos processos multifuncionais, isto é: que geram mais de um produto ou serviço. A ISO 14044:2006 sugere que se tente evitar a alocação, utilizando: (i) divisão do processo multifuncional em dois ou mais subprocessos unitários; ou (ii) expansão do sistema de produto para incluir as funções adicionais relativas aos co-produtos. Caso isto não seja possível, as entradas e saídas do sistema devem ser divididas com base em alguma relação física fundamental entre produtos. Caso a relação física não seja identificada, os fluxos devem ser divididos refletindo outras relações entre produtos, por exemplo, seu valor econômico. Este artigo visa delinear um panorama científico do uso de métodos de distribuição de 2006 a 2016. Para tanto, realizou-se uma revisão sistemática de literatura e documentou-se a frequência de escolha dos métodos nos estudos realizados no período considerado. Os resultados revelaram uma falta de consenso entre praticantes de ACV. A maioria dos estudos adota a abordagem do impacto evitado (equivalente à expansão do sistema), enquanto o primeiro passo proposto pela ISO 14044 (subdivisão) foi o método menos usado. Nossa avaliação confirmou que o problema de distribuição de impactos é tipicamente solucionado de forma contrária ao encaminhamento teórico proposto na norma, sugerindo uma oportunidade de reflexão e reformulação.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcella Ruschi Mendes Saade, Universidade de Campinas

Graduada em Engenharia Ambiental pela UFES (2010), com mestrado (2013) e doutorado (2017) em Engenharia Civil pela Unicamp. Realizou estágio de pesquisa na Universidade Técnica de Graz, Áustria. Atualmente trabalha como pesquisadora colaboradora do Departamento de Arquitetura e Construção da Unicamp. É especialista em Avaliações de Ciclo de Vida, com foco na sustentabilidade do ambiente construído. Tem experiência no desenvolvimento e adaptação de bases de inventário de ciclo de vida, incerteza de dados e problemas de multifuncionalidade.

Maristela Gomes da Silva, Universidade Federal do Espírito Santo

Graduada em Engenharia Civil pela UFES (1988), com mestrado e doutorado em Engenharia Civil pela EPUSP (1993, 1998), pós-doutorado em Engenharia Civil e Ambiental pela University of Pittsburgh (2011) e pós-doutorado em Arquitetura e Construção pela Unicamp. É Professora Titular do Departamento de Engenharia Civil da UFES. Tem experiência na área de Engenharia Civil, com ênfase em Materiais e Componentes de Construção Civil, atuando, principalmente, nos temas reciclagem de resíduos industriais, escórias siderúrgicas, cimentos, concreto, durabilidade, indicadores de sustentabilidade, avaliação do ciclo de vida, emissões de GHG, redução de impactos ambientais de materiais de construção, construção sustentável e construção civil.

Vanessa Gomes da Silva, Universidade Estadual de Campinas

Graduada em Arquitetura e Urbanismo (UFES, 1993), mestre (1998) e doutora (2003) em Eng. Civil pela Escola Politécnica da USP. Professora Associada livre-docente (2010) na UNICAMP. Tem experiência em Arquitetura e Eng. Civil, com ênfase em Projeto e Construção Sustentável, Avaliação ambiental de empreendimentos e Avaliação de ciclo de vida. Fulbright fellow pelo Programa Capes/Fulbright de Professor/Pesquisador Visitante nos EUA, na Univ. of Pittsburgh (2010) e na Harvard University (2014). Jeffrey Cook Scholar, pela Society of Building Science Educators (SBSE) em 2010, e bolsista CAPES de pesquisa pós-doutoral nos EUA em 2010/11.

Referências

ADOM, F. et al. Regional carbon footprint analysis of dairy feeds for milk production in the USA. The International Journal of Life Cycle Assessment, v. 17, n. 5, p. 520-534, 2012. https://doi.org/10.1007/s11367-012-0386-y.

AGUILERA, E.; GUZMÁN, G.; ALONSO, A. Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops. Agronomy for Sustainable Development, v. 35, n. 2, p. 713-724, 2015. https://doi.org/10.1007/s13593-014-0267-9.

ALMEIDA, C. et al. Environmental assessment of sardine (Sardina pilchardus) purse seine fishery in Portugal with LCA methodology including biological impact categories. The International Journal of Life Cycle Assessment, v. 19, n. 2, p. 297-306, 2014. https://doi.org/10.1007/s11367-013-0646-5.

AMORES, M. et al. Life cycle assessment of fuel ethanol from sugarcane in Argentina. The International Journal of Life Cycle Assessment, v. 18, n. 7, p. 1344-1357, 2013. https://doi.org/10.1007/s11367-013-0584-2.

ANASTASIOU, E. K.; LIAPIS, A.; PAPAYIANNI, I. Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials. Resources, Conservation and Recycling, v. 101, p. 1-8, 2015. https://doi.org/10.1016/j.resconrec.2015.05.009.

ANDREOLA, F. et al. Recycling of EOL CRT glass into ceramic glaze formulations and its environmental impact by LCA approach. The International Journal of Life Cycle Assessment, v. 12, n. 6, p. 448-454, 2007. https://doi.org/10.1065/lca2006.12.289.

ASTUDILLO, M. F.; THALWITZ, G.; VOLLRATH, F. Modern analysis of an ancient integrated farming arrangement: life cycle assessment of a mulberry dyke and pond system. The International Journal of Life Cycle Assessment, v. 20, n. 10, p. 1387-1398, 2015. https://doi.org/10.1007/s11367-015-0950-3.

BABARENDA GAMAGE, G. et al. Life cycle assessment of commercial furniture: a case study of Formway LIFE chair. The International Journal of Life Cycle Assessment, v. 13, n. 5, p. 401-411, 2008. https://doi.org/10.1007/s11367-008-0002-3.

BIER, J.; VERBEEK, C. R.; LAY, M. An eco-profile of thermoplastic protein derived from blood meal Part 1: allocation issues. The International Journal of Life Cycle Assessment, v. 17, n. 2, p. 208-219, 2012. https://doi.org/10.1007/s11367-011-0349-8.

BOLDRIN, A.; BALZAN, A.; ASTRUP, T. Energy and environmental analysis of a rapeseed biorefinery conversion process. Biomass Conversion and Biorefinery, v. 3, n. 2, p. 127-141, 2013. https://doi.org/10.1007/s13399-013-0071-9.

CAI, H. et al. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States. Biotechnology for Biofuels, v. 6, n. 1, p. 1-15, 2013. https://doi.org/10.1186/1754-6834-6-141.

CHEN, C. et al. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, v. 54, n. 12, p. 1231-1240, 2010. https://doi.org/10.1016/j.resconrec.2010.04.001.

CHOO, Y. et al. Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. The International Journal of Life Cycle Assessment, v. 16, n. 7, p. 669-681, 2011. https://doi.org/10.1007/s11367-011-0303-9.

CLEARY, J. The incorporation of waste prevention activities into life cycle assessments of municipal solid waste management systems: methodological issues. The International Journal of Life Cycle Assessment, v. 15, n. 6, p. 579-589, 2010. https://doi.org/10.1007/s11367-010-0186-1.

CLEARY, J. A life cycle assessment of residential waste management and prevention. The International Journal of Life Cycle Assessment, v. 19, n. 9, p. 1607-1622, 2014. https://doi.org/10.1007/s11367-014-0767-5.

COTTLE, D. J.; COWIE, A. L. Allocation of greenhouse gas production between wool and meat in the life cycle assessment of Australian sheep production. The International Journal of Life Cycle Assessment, p. 1-11, 2016. https://doi.org/10.1007/s11367-016-1054-4.

DALGAARD, R. et al. LCA of soybean meal. The International Journal of Life Cycle Assessment, v. 13, n. 3, p. 240-254, 2008. https://doi.org/10.1065/lca2007.06.342.

DHALIWAL, H. et al. A life cycle assessment of packaging options for contrast media delivery: comparing polymer bottle vs. glass bottle. The International Journal of Life Cycle Assessment, v. 19, n. 12, p. 1965-1973, 2014. https://doi.org/10.1007/s11367-014-0795-1.

DIAS, A.; ARROJA, L.; CAPELA, I. Life cycle assessment of printing and writing paper produced in Portugal. The International Journal of Life Cycle Assessment, v. 12, n. 7, p. 521-528, 2007. https://doi.org/10.1065/lca2006.08.266.

DRESSLER, D.; LOEWEN, A.; NELLES, M. Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. The International Journal of Life Cycle Assessment, v. 17, n. 9, p. 1104-1115, 2012. https://doi.org/10.1007/s11367-012-0424-9.

DU, G. et al. Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, v. 19, n. 12, p. 1948-1964, 2014. https://doi.org/10.1007/s11367-014-0797-z.

ECKELMAN, M.; CHERTOW, M. Life cycle energy and environmental benefits of a US industrial symbiosis. The International Journal of Life Cycle Assessment, v. 18, n. 8, p. 1524-1532, 2013. https://doi.org/10.1007/s11367-013-0601-5.

EKVALL, T.; FINNVEDEN, G. Allocation in ISO 14041 – a critical review. Journal of Cleaner Production, v.9, p. 197-208, 2001. https://doi.org/10.1016/S0959-6526(00)00052-4.

ESCOBAR LANZUELA, N. et al. Uncertainty analysis in the environmental assessment of an integrated management system for restaurant and catering waste in Spain. The International Journal of Life Cycle Assessment, v. 20, n. 2, p. 244-262, 2015. https://doi.org/10.1007/s11367-014-0825-z.

FERREIRA, S. et al. Life cycle assessment and valuation of the packaging waste recycling system in Belgium. Journal of Material Cycles and Waste Management, p. 1-11, 2015. https://doi.org/10.1007/s10163-015-0383-x.

FIKSEL, J. et al. Comparative life cycle assessment of beneficial applications for scrap tires. Clean Technologies and Environmental Policy, v. 13, n. 1, p. 19-35, 2011. https://doi.org/10.1007/s10098-010-0289-1.

FLYSJÖ, A. et al. How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden. The International Journal of Life Cycle Assessment, v. 16, n. 5, p. 420-430, 2011. https://doi.org/10.1007/s11367-011-0283-9 .

FRISCHKNECHT, R. Allocation in Life Cycle Inventory Analysis for joint production. International Journal of Life Cycle Assessment, v.5, p. 85-95, 2000. https://doi.org/10.1007/BF02979729.

GALA, A.; RAUGEI, M.; FULLANA-I-PALMER, P. Introducing a new method for calculating the environmental credits of end-of-life material recovery in attributional LCA. The International Journal of Life Cycle Assessment, v. 20, n. 5, p. 645-654, 2015. https://doi.org/10.1007/s11367-015-0861-3.

GALATIOTO, F. et al. Traffic modelling in system boundary expansion of road pavement life cycle assessment. Transportation Research Part D: Transport and Environment, v. 36, n. 0, p. 65-75, 2015. https://doi.org/10.1016/j.trd.2015.02.007.

GAUDREAULT, C.; SAMSON, R.; STUART, P. Energy decision making in a pulp and paper mill: selection of LCA system boundary. The International Journal of Life Cycle Assessment, v. 15, n. 2, p. 198-211, 2010. https://doi.org/10.1007/s11367-009-0125-1.

GAZULLA, C.; RAUGEI, M.; FULLANA-I-PALMER, P. Taking a life cycle look at crianza wine production in Spain: where are the bottlenecks? The International Journal of Life Cycle Assessment, v. 15, n. 4, p. 330-337, 2010. https://doi.org/10.1007/s11367-010-0173-6.

GLASS, G.V. Primary, secondary, and meta-analysis of research. Educational Researcher, v.5, n. 10, p. 3-8, 1976. http://www.jstor.org/stable/1174772.

GOMES, F. et al. Adaptation of environmental data to national and sectorial context: application for reinforcing steel sold on the French market. The International Journal of Life Cycle Assessment, v. 18, n. 5, p. 926-938, 2013. https://doi.org/10.1007/s11367-013-0558-4.

GONZÁLEZ-GARCÍA, S. et al. Combined application of LCA and eco-design for the sustainable production of wood boxes for wine bottles storage. The International Journal of Life Cycle Assessment, v. 16, n. 3, p. 224-237, 2011. https://doi.org/10.1007/s11367-011-0261-2.

GROOT, W.; BORÉN, T. Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. The International Journal of Life Cycle Assessment, v. 15, n. 9, p. 970-984, 2010. https://doi.org/10.1007/s11367-010-0225-y.

GRUBER, L. M. et al. LCA study of unconsumed food and the influence of consumer behavior. The International Journal of Life Cycle Assessment, p. 1-12, 2015. https://doi.org/10.1007/s11367-015-0933-4.

GUINÉE, J.; HEIJUNGS, R. Calculating the influence of alternative allocation scenarios in fossil fuel chains. The International Journal of Life Cycle Assessment, v. 12, n. 3, p. 173-180, 2007. https://doi.org/10.1065/lca2006.06.253.

GUINÉE, J. B.; HEIJUNGS, R.; VOET, E. A greenhouse gas indicator for bioenergy: some theoretical issues with practical implications. The International Journal of Life Cycle Assessment, v. 14, n. 4, p. 328-339, 2009. https://doi.org/10.1007/s11367-009-0080-x.

GUO, M.; MURPHY, R. J. Is There a Generic Environmental Advantage for Starch–PVOH Biopolymers Over Petrochemical Polymers? Journal of Polymers and the Environment, v. 20, n. 4, p. 976-990, 2012. https://doi.org/10.1007/s10924-012-0489-3.

HABERT, G. A method for allocation according to the economic behaviour in the EU-ETS for by-products used in cement industry. The International Journal of Life Cycle Assessment, v. 18, n. 1, p. 113-126, 2013. https://doi.org/10.1007/s11367-012-0464-1.

HEIJUNGS, R.; GUINÉE, J. B. Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Management, v. 27, pp. 997-1005, 2007. https://doi.org/10.1016/j.wasman.2007.02.013.

HEIJUNGS, R. Ten easy lessons for good communication of LCA. International Journal of Life Cycle Assessment, v. 19, pp. 473-476, 2014. https://doi.org/10.1007/s11367-013-0662-5.

HERRMANN, I. T. et al. Potential for optimized production and use of rapeseed biodiesel. Based on a comprehensive real-time LCA case study in Denmark with multiple pathways. The International Journal of Life Cycle Assessment, v. 18, n. 2, p. 418-430, 2012. https://doi.org/10.1007/s11367-012-0486-8.

HOSSAIN, M. U. et al. Evaluation of environmental friendliness of concrete paving eco-blocks using LCA approach. The International Journal of Life Cycle Assessment, v. 21, n. 1, p. 70-84, 2015. https://doi.org/10.1007/s11367-015-0988-2.

HUANG, Y.; SPRAY, A.; PARRY, T. Sensitivity analysis of methodological choices in road pavement LCA. The International Journal of Life Cycle Assessment, v. 18, n. 1, p. 93-101, 2013. https://doi.org/10.1007/s11367-012-0450-7.

HUMBERT, S. et al. Life cycle assessment of two baby food packaging alternatives: glass jars vs. plastic pots. The International Journal of Life Cycle Assessment, v. 14, n. 2, p. 95-106, 2009. https://doi.org/10.1007/s11367-008-0052-6.

HÖGLMEIER, K.; WEBER-BLASCHKE, G.; RICHTER, K. Utilization of recovered wood in cascades versus utilization of primary wood—a comparison with life cycle assessment using system expansion. The International Journal of Life Cycle Assessment, v. 19, n. 10, p. 1755-1766, 2014. https://doi.org/10.1007/s11367-014-0774-6.

ISO- INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14044: Environmental Management – Life Cycle Assessment – Requirements and Guidelines. Switzerland, 2006a.

ISO- INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14040: Environmental Management – Life cycle principles and Framework. Switzerland, 2006b.

JUNG, J.; VON DER ASSEN, N.; BARDOW, A. Comparative LCA of multi-product processes with non-common products: a systematic approach applied to chlorine electrolysis technologies. The International Journal of Life Cycle Assessment, v. 18, n. 4, p. 828-839, 2013. https://doi.org/10.1007/s11367-012-0531-7.

KARLSDÓTTIR, M. et al. Life cycle inventory of a flash geothermal combined heat and power plant located in Iceland. The International Journal of Life Cycle Assessment, v. 20, n. 4, p. 503-519, 2015. https://doi.org/10.1007/s11367-014-0842-y.

KENDALL, A.; YUAN, J.; BRODT, S. Carbon footprint and air emissions inventories for US honey production: case studies. The International Journal of Life Cycle Assessment, v. 18, n. 2, p. 392-400, 2013. https://doi.org/10.1007/s11367-012-0487-7.

KIM, S.; DALE, B.. Ethanol Fuels: E10 or E85 – Life Cycle Perspectives (5 pp). The International Journal of Life Cycle Assessment, v. 11, n. 2, p. 117-121, 2006. https://doi.org/10.1065/lca2005.02.201.

KIM, S. Regional variations in greenhouse gas emissions of biobased products in the United States—corn-based ethanol and soybean oil. The International Journal of Life Cycle Assessment, v. 14, n. 6, p. 540-546, 2009. https://doi.org/10.1007/s11367-009-0106-4.

KIM, S.; DALE, B.; JENKINS, R. Life cycle assessment of corn grain and corn stover in the United States. The International Journal of Life Cycle Assessment, v. 14, n. 2, p. 160-174, 2009. https://doi.org/10.1007/s11367-008-0054-4.

KNOERI, C.; SANYÉ-MENGUAL, E.; ALTHAUS, H.-J. Comparative LCA of recycled and conventional concrete for structural applications. The International Journal of Life Cycle Assessment, v. 18, n. 5, p. 909-918, 2013. https://doi.org/10.1007/s11367-012-0544-2.

KUCZENSKI, B.; GEYER, R. PET bottle reverse logistics—environmental performance of California’s CRV program. The International Journal of Life Cycle Assessment, v. 18, n. 2, p. 456-471, 2013. https://doi.org/10.1007/s11367-012-0495-7.

LESAGE, P. et al. Environmental assessment of brownfield rehabilitation using two different life cycle inventory models. The International Journal of Life Cycle Assessment, v. 12, n. 7, p. 497-513, 2007. https://doi.org/10.1065/lca2006.10.279.2.

LITTEL, J. H.; CORCORAN, J.; PILLA, V. Systematic reviews and meta-analysis. Nova Iorque: Oxford University Press, 2008.

LUNDIE, S. et al. Generation of an Industry-specific Physico-chemical Allocation Matrix. Application in the Dairy Industry and Implications for Systems Analysis (9 pp). The International Journal of Life Cycle Assessment, v. 12, n. 2, p. 109-117, 2007. https://doi.org/10.1065/lca2005.10.228.

LUO, L. et al. Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. The International Journal of Life Cycle Assessment, v. 14, n. 6, p. 529-539, 2009. https://doi.org/10.1007/s11367-009-0112-6.

MARGALLO, M.; ALDACO, R.; IRABIEN, Á. Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. Clean Technologies and Environmental Policy, v. 16, n. 7, p. 1319-1328, 2014. https://doi.org/10.1007/s10098-014-0761-4.

MESTRE, A.; VOGTLANDER, J. Eco-efficient value creation of cork products: an LCA-based method for design intervention. Journal of Cleaner Production, v. 57, n. 0, p. 101-114, 2013. https://doi.org/10.1016/j.jclepro.2013.04.023.

MOON, J.-M.; EUN, J.-H.; CHUNG, J.-S. Allocation of Process Gases Generated from Integrated Steelworks by an Improved System Expansion Method (7 pp). The International Journal of Life Cycle Assessment, v. 11, n. 4, p. 247-253, 2006. https://doi.org/10.1065/lca2004.12.197.

MORA, M. et al. A methodological improvement for assessing petrochemical projects through life cycle assessment and eco-costs. The International Journal of Life Cycle Assessment, v. 19, n. 3, p. 517-531, 2014. https://doi.org/10.1007/s11367-013-0660-7.

MU, D. et al. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion. Environmental Management, v. 46, n. 4, p. 565-578, 2010. https://doi.org/10.1007/s00267-010-9494-2.

MURPHY, C. W.; KENDALL, A. Life cycle inventory development for corn and stover production systems under different allocation methods. Biomass and Bioenergy, v. 58, n. 0, p. 67-75, 2013. https://doi.org/10.1016/j.biombioe.2013.08.008.

MUÑOZ, I. et al. Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. The International Journal of Life Cycle Assessment, v. 19, n. 1, p. 109-119, 2014. https://doi.org/10.1007/s11367-013-0613-1.

MUÑOZ, I. LCA and ecodesign in the toy industry: case study of a teddy bear incorporating electric and electronic components. The International Journal of Life Cycle Assessment, v. 14, n. 1, p. 64-72, 2009. https://doi.org/10.1007/s11367-008-0044-6.

MUÑOZ, I. Using LCA to Assess Eco-design in the Automotive Sector: Case Study of a Polyolefinic Door Panel (12 pp). The International Journal of Life Cycle Assessment, v. 11, n. 5, p. 323-334, 2006. https://doi.org/10.1065/lca2005.05.207.

NAPOLANO, L. et al. LCA-based study on structural retrofit options for masonry buildings. The International Journal of Life Cycle Assessment, v. 20, n. 1, p. 23-35, 2014. https://doi.org/10.1007/s11367-014-0807-1.

NEBEL, B.; ZIMMER, B.; WEGENER, G. Life Cycle Assessment of Wood Floor Coverings - A Representative Study for the German Flooring Industry (11 pp). The International Journal of Life Cycle Assessment, v. 11, n. 3, p. 172-182, 2006. https://doi.org/10.1065/lca2004.10.187.

NGUYEN, T. L. T.; HERMANSEN, J. E. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied Energy, v. 89, n. 1, p. 254-261, 2012. https://doi.org/10.1016/j.apenergy.2011.07.023.

NIELSEN, P.; HØIER, E. Environmental assessment of yield improvements obtained by the use of the enzyme phospholipase in mozzarella cheese production. The International Journal of Life Cycle Assessment, v. 14, n. 2, p. 137-143, 2009. https://doi.org/10.1007/s11367-008-0048-2.

PANICHELLI, L.; DAURIAT, A.; GNANSOUNOU, E. Life cycle assessment of soybean-based biodiesel in Argentina for export. The International Journal of Life Cycle Assessment, v. 14, n. 2, p. 144-159, 2009. https://doi.org/10.1007/s11367-008-0050-8.

PELLETIER, N.; ARDENTE, F.; BRANDÃO, M.; DE CAMILLIS, C.; PENNINGTON, D. Rationales for and limitations of preferred solutions for multi-functionality problems in LCA: is increased consistency possible? International Journal of Life Cycle Assessment, v.20, pp. 74-86, 2015. https://doi.org/10.1007/s11367-014-0812-4.

PETERS, J.; IRIBARREN, D.; DUFOUR, J. Life cycle assessment of pyrolysis oil applications. Biomass Conversion and Biorefinery, v. 5, n. 1, p. 1-19, 2015. https://doi.org/10.1007/s13399-014-0120-z.

PIRES, A.; CHANG, N.-B.; MARTINHO, G. Reliability-based life cycle assessment for future solid waste management alternatives in Portugal. The International Journal of Life Cycle Assessment, v. 16, n. 4, p. 316-337, 2011. https://doi.org/10.1007/s11367-011-0269-7.

PIRES, A.; MARTINHO, G. Life cycle assessment of a waste lubricant oil management system. The International Journal of Life Cycle Assessment, v. 18, n. 1, p. 102-112, 2013. https://doi.org/10.1007/s11367-012-0455-2.

PRASARA-A, J.; GRANT, T. Comparative life cycle assessment of uses of rice husk for energy purposes. The International Journal of Life Cycle Assessment, v. 16, n. 6, p. 493-502, 2011. https://doi.org/10.1007/s11367-011-0293-7.

REAP, J.; ROMAN, F.; DUNCAN, S; BRAS, B. A survey of unresolved problems in life cycle assessment. Part I. International Journal of Life Cycle Assessment, v.13, pp. 290- 300, 2008. https://doi.org/10.1007/s11367-008-0008-x.

RIDOUTT, B. et al. Water footprint of livestock: comparison of six geographically defined beef production systems. The International Journal of Life Cycle Assessment, v. 17, n. 2, p. 165-175, 2012. https://doi.org/10.1007/s11367-011-0346-y.

SAADE, M. R. M.; SILVA, M. G.; GOMES, V. Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making. Resources, Conservation and Recycling, v. 99, p. 40-47, 2015. https://doi.org/10.1016/j.resconrec.2015.03.011.

SAFT, R. J. Life cycle assessment of a pyrolysis/gasification plant for hazardous paint waste. The International Journal of Life Cycle Assessment, v. 12, n. 4, p. 230-238, 2007. https://doi.org/10.1065/lca2007.05.332.

SAMUEL-FITWI, B. et al. Aspiring for environmentally conscious aquafeed: comparative LCA of aquafeed manufacturing using different protein sources. Journal of Cleaner Production, v. 52, n. 0, p. 225-233, 2013. https://doi.org/10.1016/j.jclepro.2013.02.031.

SAMUEL-FITWI, B. Comparative life cycle assessment (LCA) of raising rainbow trout (Oncorhynchus mykiss) in different production systems. Aquacultural Engineering, v. 54, n. 0, p. 85-92, 2013. https://doi.org/10.1016/j.aquaeng.2012.12.002.

SANDIN, G. et al. Allocation in LCAs of biorefinery products: implications for results and decision-making. Journal of Cleaner Production, v. 93, n. 0, p. 213-221, 2015. https://doi.org/10.1016/j.jclepro.2015.01.013.

SAYAGH, S.; VENTURA, A.; HOANG, T.; FRANÇOIS, D.; JULLIEN, A. Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Resources, Conservation and Recycling, v. 54, pp. 348-358, 2010. https://doi.org/10.1016/j.resconrec.2009.08.011.

SCHARNHORST, W. et al. Environmental Assessment of End-of-Life Treatment Options for a GSM 900 Antenna Rack (12 pp paper version/18 pp online version). The International Journal of Life Cycle Assessment, v. 11, n. 6, p. 425-436, 2006/11/01 2006. ISSN 0948-3349. http://dx.doi.org/10.1065/lca2005.08.216.

SCHMIDT, J. Comparative life cycle assessment of rapeseed oil and palm oil. The International Journal of Life Cycle Assessment, v. 15, n. 2, p. 183-197, 2010. https://doi.org/10.1007/s11367-009-0142-0.

SCHMIDT, J. H.; WEIDEMA, B. P. Shift in the marginal supply of vegetable oil. The International Journal of Life Cycle Assessment, v. 13, n. 3, p. 235-239, 2007. https://doi.org/10.1065/lca2007.07.351.

SCHRIJVERS, D. L.; LOUBET, P.; SONNEMANN, G. Developing a systematic framework for consistent allocation in LCA. International Journal of Life Cycle Assessment, v. 21, pp. 976-993, 2016. https://doi.org/10.1007/s11367-016-1063-3.

SHONNARD, D. R. et al. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region. Environmental Management, v. 56, n. 6, p. 1356-1376, 2015. https://doi.org/10.1007/s00267-015-0543-8.

SIEGL, S.; LAABER, M.; HOLUBAR, P. Green Electricity From Biomass, Part I: Environmental Impacts of Direct Life Cycle Emissions. Waste and Biomass Valorization, v. 2, n. 3, p. 267-284, 2011. https://doi.org/10.1007/s12649-011-9077-3.

SIEGL, S. Green Electricity from Biomass, Part II: Environmental Impacts Considering Avoided Burdens from Replacing the Conventional Provision of Additional Functions. Waste and Biomass Valorization, v. 3, n. 1, p. 1-21, 2012. https://doi.org/10.1007/s12649-011-9091-5.

SILVA, D. et al. Do wood-based panels made with agro-industrial residues provide environmentally benign alternatives? An LCA case study of sugarcane bagasse addition to particle board manufacturing. The International Journal of Life Cycle Assessment, v. 19, n. 10, p. 1767-1778, 2014. https://doi.org/10.1007/s11367-014-0776-4.

SLADE, R.; BAUEN, A.; SHAH, N. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnology for Biofuels, v. 2, n. 1, p. 1-19, 2009. https://doi.org/10.1186/1754-6834-2-15.

SPUGNOLI, P.; DAINELLI, R. Environmental comparison of draught animal and tractor power. Sustainability Science, v. 8, n. 1, p. 61-72, 2013. https://doi.org/10.1007/s11625-012-0171-7.

SREEJITH, C.; MURALEEDHARAN, C.; ARUN, P. Life cycle assessment of producer gas derived from coconut shell and its comparison with coal gas: an Indian perspective. International Journal of Energy and Environmental Engineering, v. 4, n. 1, p. 1-22, 2013. https://doi.org/10.1186/2251-6832-4-8.

SUH, S.; YANG, Y. On the uncanny capabilities of consequential LCA. The International Journal of Life Cycle Assessment, v. 19, p. 1179-1184, 2014. https://doi.org/10.1007/s11367-014-0739-9.

SVANES, E.; ARONSSON, A. S. Carbon footprint of a Cavendish banana supply chain. The International Journal of Life Cycle Assessment, v. 18, n. 8, p. 1450-1464, 2013. https://doi.org/10.1007/s11367-013-0602-4.

SVANES, E.; VOLD, M.; HANSSEN, O. Effect of different allocation methods on LCA results of products from wild-caught fish and on the use of such results. The International Journal of Life Cycle Assessment, v. 16, n. 6, p. 512-521, 2011a. https://doi.org/10.1007/s11367-011-0288-4.

SVANES, E. Environmental assessment of cod (Gadus morhua) from autoline fisheries. The International Journal of Life Cycle Assessment, v. 16, n. 7, p. 611-624, 2011b. https://doi.org/10.1007/s11367-011-0298-2.

THOMASSEN, M. et al. Attributional and consequential LCA of milk production. The International Journal of Life Cycle Assessment, v. 13, n. 4, p. 339-349, 2008. https://doi.org/10.1007/s11367-008-0007-y.

THRANE, M. LCA of Danish Fish Products. New methods and insights (9 pp). The International Journal of Life Cycle Assessment, v. 11, n. 1, p. 66-74, 2006. https://doi.org/10.1065/lca2006.01.232.

TILLMAN, A-M.; EKVALL, T.; BAUMANN, H.; RYDBERG, T. Choice of system boundaries in life cycle assessment. Journal of Cleaner Production, v.2, pp. 21-29, 1994. https://doi.org/10.1016/0959-6526(94)90021-3.

TILLMAN, A-M. Significance of decision-making for LCA methodology. Environmental Impact Assessment Review, v. 20, p. 113-123, 2000. https://doi.org/10.1016/S0195-9255(99)00035-9.

TONIOLO, S. et al. Comparative LCA to evaluate how much recycling is environmentally favourable for food packaging. Resources, Conservation and Recycling, v. 77, n. 0, p. 61-68, 2013. https://doi.org/10.1016/j.resconrec.2013.06.003.

TSIROPOULOS, I. et al. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. The International Journal of Life Cycle Assessment, v. 19, n. 5, p. 1049-1067, 2014. https://doi.org/10.1007/s11367-014-0714-5.

VAN DER WERF, H. G.; NGUYEN, T. Construction cost of plant compounds provides a physical relationship for co-product allocation in life cycle assessment. The International Journal of Life Cycle Assessment, v. 20, n. 6, p. 777-784, 2015. https://doi.org/10.1007/s11367-015-0872-0.

VÁZQUEZ-ROWE, I. et al. Applying consequential LCA to support energy policy: Land use change effects of bioenergy production. Science of The Total Environment, v. 472, n. 0, p. 78-89, 2014. https://doi.org/10.1016/j.scitotenv.2013.10.097.

WARDENAAR, T. et al. Differences between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio-energy policies. The International Journal of Life Cycle Assessment, v. 17, n. 8, p. 1059-1067, 2012. https://doi.org/10.1007/s11367-012-0431-x.

WEIDEMA, B. P. Avoiding co-product allocation in life cycle assessment. Journal of Industrial Ecology, v.4, pp. 11-33, 2001. https://doi.org/10.1162/108819800300106366.

WEIDEMA, B. P.; SCHMIDT, J. H. Avoiding allocation in life cycle assessment revisited. Journal of Industrial Ecology, v. 14, n. 2, p. 192-195, 2010. https://doi/10.1111/j.1530-9290.2010.00236.x.

WERNER, F. et al. Post-consumer waste wood in attributive product LCA. The International Journal of Life Cycle Assessment, v. 12, n. 3, p. 160-172, 2007. https://doi.org/10.1065/lca2006.05.249.

WIEDEMANN, S. et al. Application of life cycle assessment to sheep production systems: investigating co-production of wool and meat using case studies from major global producers. The International Journal of Life Cycle Assessment, v. 20, n. 4, p. 463-476, 2015. https://doi.org/10.1007/s11367-015-0849-z.

WILOSO, E.; BESSOU, C.; HEIJUNGS, R. Methodological issues in comparative life cycle assessment: treatment options for empty fruit bunches in a palm oil system. The International Journal of Life Cycle Assessment, v. 20, n. 2, p. 204-216, 2015. https://doi.org/10.1007/s11367-014-0815-1.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: International Conference on Evaluation and Assessment in Software Engineering, 18, 2014. London. Proceedings… New York: ACM, 2014. p. 1-10.

XIE, M. et al. Life cycle assessment of composite packaging waste management—a Chinese case study on aseptic packaging. The International Journal of Life Cycle Assessment, v. 18, n. 3, p. 626-635, 2013. https://doi.org/10.1007/s11367-012-0516-6.

ZAIMES, G. G.; KHANNA, V. The role of allocation and coproducts in environmental evaluation of microalgal biofuels: How important? Sustainable Energy Technologies and Assessments, v. 7, n. 0, p. 247-256, 2014. https://doi.org/10.1016/j.seta.2014.01.011.

ZAMAN, A. U. Comparative study of municipal solid waste treatment technologies using life cycle assessment method. International Journal of Environmental Science & Technology, v. 7, n. 2, p. 225-234, 2010. https://doi.org/10.1007/BF0332613.

ZAMPORI, L.; DOTELLI, G. Design of a sustainable packaging in the food sector by applying LCA. The International Journal of Life Cycle Assessment, v. 19, n. 1, p. 206-217, 2014. https://doi.org/10.1007/s11367-013-0618-9.

ZIMMERMANN, A. et al. Are public payments for organic farming cost-effective? Combining a decision-support model with LCA. The International Journal of Life Cycle Assessment, v. 16, n. 6, p. 548-560, 2011. https://doi.org/10.1007/s11367-011-0286-6.

Downloads

Publicado

2017-12-31

Como Citar

SAADE, M. R. M.; SILVA, M. G. da; SILVA, V. G. da. O uso de métodos de distribuição de impactos em ACVs de processos multifuncionais: uma revisão sistemática da literatura. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 8, n. 4, p. 272–285, 2017. DOI: 10.20396/parc.v8i4.8650295. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8650295. Acesso em: 20 jan. 2022.

Artigos mais lidos pelo mesmo(s) autor(es)