Banner Portal
Uso de PCM para edificações em região de clima quente
PDF

Palavras-chave

Edificações
PCM
Desempenho térmico
Clima quente
Revisão sistemática

Como Citar

OLIVEIRA, Roberta Bastos de; GONZALES, Tomaz Silva; CARVALHO, Michele Tereza Marques. Uso de PCM para edificações em região de clima quente: uma revisão sistemática. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 12, n. 00, p. e021001, 2021. DOI: 10.20396/parc.v12i00.8658590. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8658590. Acesso em: 17 jul. 2024.

Resumo

O consumo mundial de energia continua a crescer e tem se mostrado crítico quanto ao uso de sistemas de refrigeração em países de clima quente. O desempenho térmico da envoltória do edifício exerce considerável influência nas condições ambientais internas e no conforto do usuário. Esse artigo tem como objetivo identificar, selecionar, avaliar e sintetizar informações sobre o uso de PCMs (materiais de mudança de fase) em edificações em países de clima quente como estratégia para um bom desempenho térmico, por meio de uma Revisão Sistemática da Literatura (RSL). Enfatiza-se os tipos de materiais, seus critérios de seleção e formas de incorporação e aplicação, assim como, identifica-se lacunas e tendências de pesquisa. A escolha do tema deve-se à observância de uma tendência de pesquisas internacionais voltadas para o uso de PCM em edificações por meio de uma análise prévia de artigos. Os artigos mapeados pela RSL demonstraram o grande potencial que os PCMs têm na redução do consumo energético das edificações em países de clima quente. A partir das discussões é possível reforçar a ideia de que os parâmetros climáticos e as propriedades termofísicas do PCM são essenciais nas escolhas de projeto, entretanto ênfase igual deve ser dada a estratégias passivas que podem atuar em conjunto, além da disponibilidade do material e dos recursos financeiros, bem como os objetivos de interesse. Reforça-se o princípio de que cada projeto é único, mas que os resultados podem servir como referência inicial para outras análises.

 

 

 

https://doi.org/10.20396/parc.v12i00.8658590
PDF

Referências

AKEIBER, H. J. et al. Thermal performance and economic evaluation of a newly developed phase change material for effective building encapsulation. Energy Conversion and Management, v. 150, p. 48–61. 2017. ISSN 0196-8904. DOI: http://dx.doi.org/10.1016/j.enconman.2017.07.043.

ARANDA-ÚSON, A. et al. Phase change material applications in buildings: An environmental assessment for some Spanish climate severities. Science of The Total Environment, v. 444, p. 16-25. 2013. DOI: https://doi.org/10.1016/j.scitotenv.2012.11.012.

BAETENS, R.; JELLE, B. P.; GUSTAVSEN, A. Phase Change Materials For Building Applications: a state-of-the-art review. Energy and Buildings, v. 42, n. 9, p. 1361-1368, set. 2010. DOI: https://doi.org/10.1016/j.enbuild.2010.03.026.

BIMAGANBETOVA, M; MEMON, S. A.; SHERIYEV, A. Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region. Renewable Energy, v. 148, p.402-416, abr. 2019. DOI: https://doi.org/10.1016/j.renene.2019.10.046.

BISWAS, K. et al. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Applied Energy, v. 131, p. 517–529. 2014. DOI: http://dx.doi.org/10.1016/j.apenergy.2014.02.047.

BORGSTEINA, E. H.; LAMBERTS, R. Developing energy consumption benchmarks for buildings: Bankbranches in Brazil. Energy and Buildings, v. 82, p. 82–91. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.07.028.

BRITO, A. C. Características térmicas de materiais de mudança de fase adequados para edificações brasileiras. Ambiente Construído, v. 17, n. 1, p. 125-145, jan./mar. 2017. DOI: http://dx.doi.org/10.1590/s1678-86212017000100128.

CHADEGANI, A. A. et al. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science, v. 9, n. 5, p. 1911-2017. 2013. DOI: http://dx.doi.org/10.5539/ass.v9n5p18.

COSTA, H. A.; LOGSDON, L.; FABRICIO, M. M. Flexibilidade em projetos de arquitetura: contribuições a partir de uma revisão sistemática da literatura. PARC Pesquisa em Arquitetura e Construção, v. 8, n. 3, p. 144-160, set. 2017. DOI: http://dx.doi.org/10.20396/parc.v8i3.8650206.

FABBRI, S. et al. Improvements in the StArt tool to better support the systematic review process. In: 20th International Conference on Evaluation and Assessment in Software Engineering, 21, Limerick, 2016. Anais [...]. Limerick: ACM/Digital Library, 2016. DOI: http://dx.doi.org/10.1145/2915970.2916013.

GOUGH, D.; OLIVER, S; THOMAS, J. An introduction to systematic reviews. Londres: Sage Publications Ltd., 2012.

GUARINO, F. et al. PCM thermal energy storage in buildings: experimental study and applications. Energy Procedia, v. 70, p. 219 – 228. 2015. DOI: http://dx.doi.org/10.1016/j.egypro.2015.02.118.

GUICHARD, S. et al. A complex roof incorporating phase change material for improving thermal comfort in a dedicated test cell. Renewable Energy, v. 101, p. 450-461. 2017. DOI: http://dx.doi.org/10.1016/j.renene.2016.09.018.

HAWES, D. W.; FELDMAN, D.; BANU, D. Latent heat storage in building materials. Energy and Buildings, v.20, p. 77-86. 1993.

HERNANDES, E. et al. Using GQM and TAM to evaluate StArt – a tool that supports Systematic Review. CLEI Eletronic Journal, v.15, n.1, p.3, abr. 2012.

HU, J.; YU, X. Thermo and light-responsive building envelope: Energy analysis under different climate conditions. Solar Energy, v. 193, p. 866–877, outubro. 2019. DOI: https://doi.org/10.1016/j.solener.2019.10.021.

IOMMI, M. The mediterranean smart adaptive wall. An experimental design of a smart and adaptive facade module for the mediterranean climate. Energy and Buildings, v. 158, p. 1450-1460, 2018. DOI: htps://doi.org/10.1016/j.enbuild.2017.11.025

JI, R. et al. Numerical assessing energy performance for building envelopes with phase change material. International Journal of Energy Research, v. 43, n. 12, p. 6222–6232. 2019. DOI: https://doi-org.ez54.periodicos.capes.gov.br/10.1002/er.4293.

KITCHENHAM, B. Procedures for performing systematic reviews. Keele University Technical Report TR/SE-0401, Department of Computer Science, Keele University, 2004.

KÖSE, E.; MANIOĞLU, G. Evaluation of the performance of a building envelope constructed with phase-change materials in relation to orientation in different climatic regions. E3S Web of Conferences, v. 111, n. 201 9. 2019.

LEI, J.; YANG, J.; YANG, E. -H. Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Applied Energy, v. 162, p. 207–217. 2016. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.10.031.

MADHUMATHI, A.; SUNDARRAJA, M.C. Energy efficiency in buildings in hot humid climatic regions using phase change materials as thermal mass in building envelope. Energy and Environment, v. 25, n. 8, p. 1405-1421. 2014. DOI: https://doi.org/10.1260/0958-305X.25.8.1405.

MARIN, P. et al. Energy savings due to the use of PCM for relocatable light weight buildings passive heating and cooling in different weather conditions. Energy and Buildings, v. 129, p. 274–283. 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.08.007.

MEMARIAN, S. et al. Single and combined phase change materials: Their effect on seasonal transition period. Energy and Buildings, v. 169, p. 453–472. 2018. DOI: https://doi.org/10.1016/j.enbuild.2018.03.085.

NATEPHRA, W. et al. Integrating 4D thermal information with BIM for building envelope thermal performance analysis and thermal comfort evaluation in naturally ventilated environments. Building and Environment, v. 124, p. 194-208. 2017. DOI: http://dx.doi.org/10.1016/j.buildenv.2017.08.004.

NAZI, W. I. W. M. et al. P. Passive Cooling Using Phase Change Material and Insulation for High-rise Office Building in Tropical Climate. Energy Procedia, v. 142, p. 2295-2302. 2017. DOI: http://dx.doi.org/10.1016/j.egypro.2017.12.632.

NEMATCHOUA, M. K. et al. Application of phase change materials, thermal insulation, and external shading for thermal comfort improvement and cooling energy demand reduction in an office building under different coastal tropical climates. Solar Energy, v. 207, p. 458-470. 2020. DOI: https://doi.org/10.1016/j.solener.2020.06.110.

NEMATCHOUA, M. K.; VANONA, J. C.; OROSA, J. A. Energy Efficiency and Thermal Performance of Office Buildings Integrated with Passive Strategies in Coastal Regions of Humid and Hot Tropical Climates in Madagascar. Applied Sciences, v. 10, n.7, p.2438. 2020. DOI: https://dx.doi.org.br/ 10.3390/app10072438.

MAO, Q. YANG, M. Study on heat transfer performance of a solar double-slope PCM glazed roof with different physical parameters. Energy and Buildings, v. 223, p. 11041. 2020. DOI: https://doi.org/10.1016/j.enbuild.2020.110141.

PISELLI, C. CASTALDO, V. L. PISELLO, A. L. How to enhance thermal energy storage effect of PCM in roofs with varying solar reflectance: Experimental and numerical assessment of a new roof system for passive cooling in different climate conditions. Solar Energy, v. 192, p. 106-119. 2019. DOI: https://doi.org/10.1016/j.solener.2018.06.047.

RAOUX, S. Phase change materials. Annual Review of Materials Research, v. 39, p. 25-48. 2009. DOI: https://doi.org.br/10.1146/annurev-matsci-082908-145405.

RATHORE, P. K. S.; SHUKLA, S. K. An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings. Renewable Energy, v. 149, p. 1300-1313. 2019. DOI: https://doi.org/10.1016/j.renene.2019.10.130.

RATHORE, P. K. S.; SHUKLA, S. K.; GUPTA, N. K. Yearly analysis of peak temperature, thermal amplitude, time lag and decrement factor of a building envelope in tropical climate. Journal of Building Engineering, v. 31, p. 101459. 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101459.

RUSCHEL, R. C. et al. Revisões sistemáticas da Literatura: Parte II. PARC Pesquisa em Arquitetura e Construção, v. 8, n. 4, p. 217-219, dez. 2017. DOI: http://dx.doi.org/10.20396/parc.v8i4.8652036.

SAIKIA, P; AZAD, A. S.; RAKSHIT, D. Thermodynamic analysis of directionally influenced phase change material embedded building walls. International Journal of Thermal Sciences, v. 126, p. 105–117. 2018. DOI: https://doi.org/10.1016/j.ijthermalsci.2017.12.029.

SAIKIA, P. et al. Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate. Energy, v. 197, p. 117263, abril. 2020. DOI: https://doi.org/10.1016/j.energy.2020.117263

SOARES, N. et al. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy and Buildings, v. 59, p. 82-103. 2013. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.12.042.

SOLGI, E. et al. The impact of phase change materials assisted night purge ventilation on the indoor thermal conditions of office buildings in hot-arid climates. Energy and Buildings, v. 150, p. 448-497. 2017. DOI: http://dx.doi.org/10.1016/j.enbuild.2017.06.035.

SOLGI, E. et al. A parametric study of phase change material behavior when used with night ventilation in different climatic zones. Building and Environment, v. 147, p. 327-336. 2019a. DOI: https://doi.org/10.1016/j.buildenv.2018.10.031.

SOLGI, E. et al. A parametric study of phase change material characteristics when coupled with thermal insulation for different Australian climatic zones. Building and Environment, v. 163, p. 106317. 2019b. DOI: https://doi.org/10.1016/j.buildenv.2019.106317.

SOLGI, E.; FAYAZ, R.; KARI, B. M. Cooling load reduction in office buildings of hot-arid climate, combining phase change materials and night purge ventilation. Renewable energy, v. 85, p. 725-731. 2016. DOI: http://dx.doi.org/10.1016/j.renene.2015.07.028.

SOLGI, E.; MEMARIAN, S.; MOUD, G. N. Financial viability of PCMs in countries with low energy cost: A case study of different climates in Iran. Energy and Buildings, v. 173, p. 128-137. 2018. DOI: https://doi.org/10.1016/j.enbuild.2018.05.028.

SOVETOVA, M; MEMON, S. A.; KIM, J. Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Solar Energy, v. 189, p. 357–371, abril. 2019. DOI: https://doi.org/10.1016/j.solener.2019.07.067.

WAHID, M. A. et al. An overview of phase change materials for construction architecture thermal management in hot and dry climate region. Applied Thermal Engineering, v. 112, p. 1240-1259. 2017. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2016.07.032.

YAN, T. et al. Dynamic simplified PCM models for the pipe-encapsulated PCM wall system for self-activated heat removal. International Journal of Thermal Sciences, v. 144, p. 27-41. 2019. DOI: https://doi.org/10.1016/j.ijthermalsci.2019.05.015.

ZHOU, D.; ZHAO, C. Y.; TIAN, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, v. 92, p. 593-605. 2012. DOI: https://doi.org.br/10.1016/j.apenergy.2011.08.025.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 PARC Pesquisa em Arquitetura e Construção

Downloads

Não há dados estatísticos.