Os efeitos das mudanças climáticas nas condições de conforto térmico urbano

Autores

DOI:

https://doi.org/10.20396/parc.v13i00.8665827

Palavras-chave:

Mudanças climáticas, Ilha de calor, Conforto térmico urbano, Termorregulação humana, PET

Resumo

Climate change is a global reality, leading to consequences for both the natural and urban environment. These changes and their implications can be perceived in features such as ecological cycles, in the economic status of a country, or on the well-being and physical integrity of a population. Hence, this study aimed to analyse the effects of climate change on urban thermal comfort and the physiological limits of a population in a tropical city, applying the Physiological Equivalent Temperature (PET) index and correlating it to the local wet-bulb temperature. The method adopted consists of four stages: (1) assembling weather files for future scenarios; (2) setting up scenarios for computational simulations; (3) choosing the most adequate urban thermal comfort index; and (4) selecting a risk parameter to evaluate human health risk. The results show that the presumed urban temperatures, considering 2050 and 2080 scenarios as parameters, can cause serious damage to inhabitants’ health, given the frequency of high temperatures recorded in some months of the year. Accordingly, it is clear that there is a need for balance between the temperature variables and relative air humidity is required, striving for better comfort conditions, as well as improving users' permanence in external environments.

Downloads

Não há dados estatísticos.

Biografia do Autor

Layra Ramos Lugão, Universidade Federal do Espírito Santo

Arquiteta e Urbanista pela Universidade Federal do Espírito Santo. Mestrado em Arquitetura e Urbanismo pela Universidade Federal do Espírito Santo (Vitória - ES, Brasil).

Juliana Silva Almeida Santos, Universidade Federal do Espírito Santo

Mestrado em Arquitetura e Urbanismo pela Universidade Federal do Espírito Santo. Doutorado em andamento na Universidade Federal do Espírito Santo (Vitória - ES, Brasil).

Anderson Azevedo Fraga, Universidade Federal do Espírito Santo

Arquiteto e Urbanista pela Universidade Federal do Espírito Santo. Mestre em Arquitetura e Urbanismo  pela Universidade Federal do Espírito Santo (Vitória - ES, Brasil).

Edna Aparecida Nico-Rodrigues, Universidade Federal do Espírito Santo

Doutorado em Arquitetura e  Urbanismo pela Universidad del Bio-Bio. Professora Associada na Universidade Federal do Espírito Santo (Vitória - ES, Brasil).

Cristina Engel de Alvarez, Universidade Federal do Espírito Santo

Doutorado em Arquitetura e Urbanismo pela Universidade de São Paulo. Professora titular na Universidade Federal do Espírito Santo (Vitória - ES, Brasil).

Referências

ASHRAE. AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. The ASHRAE Handbook of Fundamentals. Peachtree Corners: American Society of Heating, 2017. 1013 p.

BATHIANY, S.; DAKOS, V.; SCHEFFER, M.; LENTON, T. M. Climate models predict increasing temperature variability in poor countries. Science Advances, v. 4, n. 5, May 2018. DOI: https://doi.org/10.1126/sciadv.aar5809. DOI: https://doi.org/10.1126/sciadv.aar5809

BUENO, B.; NORFORD, L.; HIDALGO, J.; PIGEON, G. The urban weather generator. Journal of Building Performance Simulation, v. 6, n. 4, p. 269-281. 2013. DOI: https://doi.org/10.1080/19401493.2012.718797 . DOI: https://doi.org/10.1080/19401493.2012.718797

CLIMATE Change and Extreme Heat: What You Can Do to Prepare. Washington, DC: Environmental Protection Agency (EPA); Centre’s for Disease Control and Prevention (CDC). Oct. 2016. 20 p. Disponível em: https://www.cdc.gov/climateandhealth/pubs/extreme-heat-guidebook.pdf. Acesso em: 21 maio 2021.

COCCOLO, S.; KÄMPF, J.; SCARTEZZINI, J. L.; PEARLMUTTER, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, v. 18, p. 33-57, Dec. 2016. DOI: https://doi.org/10.1016/j.uclim.2016.08.004. DOI: https://doi.org/10.1016/j.uclim.2016.08.004

CORREA, W. S. C. Campo térmico e higrométrico da Regional Praia do Canto no município de Vitória (ES). 2014. 165 p. Dissertação (Mestrado em Geografia) – Centro de Ciências Humanas e Naturais. Universidade Federal do Espírito Santo, Vitória, 2014. Disponível em: http://repositorio.ufes.br/handle/10/1193. Acesso em: 15 mar. 2022.

DE LUCA, F.; NABONI, E.; LOBACCARO, G. Tall buildings cluster form rationalization in a Nordic climate by factoring in indoor-outdoor comfort and energy. Energy & Buildings, v. 238, p. 110831, May 2021. DOI: https://doi.org/10.1016/j.enbuild.2021.110831. DOI: https://doi.org/10.1016/j.enbuild.2021.110831

EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Clima. Brasília: Embrapa, 2020 Disponível em: https://www.cnpf.embrapa.br/pesquisa/efb/clima.htm. Acesso em: 13 nov. 2020.

EVOLA, G.; COSTANZO, V.; MAGRÌ, C.; MARGANI, G.; MARLETTA, L.; NABONI, E. A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues. Energy & Buildings, v. 216, p. 109946, June 2020. DOI: https://doi.org/10.1016/j.enbuild.2020.109946. DOI: https://doi.org/10.1016/j.enbuild.2020.109946

FAHMY, M.; EL-HADY, H.; MAHDY, M.; ABDELALIM, M. F. On the green adaptation of urban developments in Egypt; predicting community future energy efficiency using coupled outdoor-indoor simulations. Energy and Buildings, v. 153, p. 241-261, Oct. 2017. DOI: https://dx.doi.org/10.1016/j.enbuild.2017.08.008. DOI: https://doi.org/10.1016/j.enbuild.2017.08.008

FERON, S.; CORDERO, R. R.; DAMIANI, A.; LLANILLO, P. J.; JORQUERA, J.; SEPULVEDA, E.; ASENCIO, D.; LAROZE, D.; LABBE, F.; CARRASCO, J.; TORRES, G. Observations and Projections of Heat Waves in South America. Scientific Reports, v. 9, 8173, June 2019. DOI: https://doi.org/10.1038/s41598-019-44614-4. DOI: https://doi.org/10.1038/s41598-019-44614-4

FRANKENFIELD, D.; ROTH-YOUSEY, L.; COMPHER, C. Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese Adults: A Systematic Review. Journal of the American Dietetic Association, v. 105, n. 5, p. 775–789, May 2005. DOI: https://doi.org/10.1016/j.jada.2005.02.005. DOI: https://doi.org/10.1016/j.jada.2005.02.005

GOOGLE. GOOGLE EARTH: Versão Pro. Mountain View: GOOGLE, 2019. Disponível em: https://www.google.com/intl/pt-BR/earth/versions/#earth-pro. Acesso em: 20 nov. 2019.

GUARDA, E. L. A.; DOMINGOS, R. M. A.; JORGE, S. H. M.; DURANTE, L. C.; SANCHES, J. C. M. LEÃO, M.; CALLEJAS, I. J. A. The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities and Society, v. 52, p. 101843, Jan. 2020. DOI: https://doi.org/10.1016/j.scs.2019.101843. DOI: https://doi.org/10.1016/j.scs.2019.101843

HÖPPE, P. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, v. 43, p. 71–75, Oct. 1999. DOI: https://doi.org/10.1007/s004840050118. DOI: https://doi.org/10.1007/s004840050118

INMET. INSTITUTO NACIONAL DE METEOROLOGIA. Clima. Normais climatológicas. Gráficos. Brasília: INMET, 2020. Disponível em: https://clima.inmet.gov.br/GraficosClimatologicos/DF/83377. Acesso em: 13 nov. 2020.

IPCC. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Brussels: IPCC, 2007. 996 p. Disponível em: https://www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf. Acesso em: 08 nov. 2019.

JENTSCH, M. F.; JAMES, P. A. B.; BOURIKAS, L.; BAHAJ, A. S. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, v. 55, p. 514-524, July 2013. DOI: https://doi.org/10.1016/j.renene.2012.12.049. DOI: https://doi.org/10.1016/j.renene.2012.12.049

KRÜGER, E. L.; ROSSI, F. A.; CRISTELI, P. S. SOUZA, H. A. Calibração do índice de conforto para espaços externos Physiological Equivalent Temperature (PET) para Curitiba. Ambiente Construído, v. 18, n. 3, p. 135-148, jul./set. 2018. DOI: http://dx.doi.org/10.1590/s1678-86212018000300272. DOI: https://doi.org/10.1590/s1678-86212018000300272

LABEEE. LABORATÓRIO DE EFICIÊNCIA ENERGÉTICA EM EDIFICAÇÕES. Arquivos climáticos INMET 2018. Florianópolis: UFSC, 2019. Disponível em: https://labeee.ufsc.br/downloads/arquivos-climaticos/inmet2018. Acesso em: 20 jun. 2021.

LAPOLA, D. M.; SILVA, J. M. C.; BRAGA, D. R.; CARPIGIANI, L.; OGAWA, F.; TORRES, R. R.; BARBOSA, L. C. F.; OMETTO, J. P. H. B.; JOLY, C. A. A climate‐change vulnerability and adaptation assessment for Brazil's protected areas. Conservation Biology, v. 34, n. 2, p. 427-437, Aug. 2019. DOI: https://doi.org/10.1111/cobi.13405. DOI: https://doi.org/10.1111/cobi.13405

LIMA, I.; SCALCO, V.; LAMBERTS, R. Estimating the impact of urban densification on high-rise office building cooling loads in a hot and humid climate. Energy & Buildings, v. 182, p. 30-44, Jan. 2019. DOI: https://doi.org/10.1016/j.enbuild.2018.10.019. DOI: https://doi.org/10.1016/j.enbuild.2018.10.019

LIN, T. P.; MATZARAKIS, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, v. 52, p. 281–290, Oct. 2008. DOI: https://doi.org/10.1007/s00484-007-0122-7. DOI: https://doi.org/10.1007/s00484-007-0122-7

LUCARELLI, C. C.; CARLO, J. C.; MARTINEZ, A. C. P. Otimização baseada em simulação para uma cobertura inspirada em origami. PARC Pesquisa em Arquitetura e Construção, v. 11, ago. 2020. DOI: https://doi.org/10.20396/parc.v11i0.8658250. DOI: https://doi.org/10.20396/parc.v11i0.8658250

LUCCHESE, J. R.; MIKURI, L. P.; FREITAS, N. V. S.; ANDREASI, W. A. Application of Selected Indices on Outdoor Thermal Comfort Assessment in Midwest Brazil. International Journal of Science and Engineering Investigations, v. 7, n. 4, p. 291-302, 2016. Disponível em: http://www.ijee.ieefoundation.org/vol7/issue4/IJEE_03_v7n4.pdf. Acesso em: 20 jan. 2022.

MATZARAKIS, A.; MAYER, H.; IZIOMON, M. G. Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, v. 43, p. 76–84, Oct. 1999. DOI: https://doi.org/10.1007/s004840050119. DOI: https://doi.org/10.1007/s004840050119

MAUREE, D.; NABONI, E.; COCCOLO, S.; PERERA, A. T. D.; VAHID, M. N.; SCARTEZZINI, J. L. A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, v. 112, p. 733-746, Sept. 2019. DOI: https://doi.org/10.1016/j.rser.2019.06.005. DOI: https://doi.org/10.1016/j.rser.2019.06.005

MONTEIRO, L. M.; ALUCCI, M. P. Calibration of Outdoor Thermal Comfort Models. In: CONFERENCE ON PASSIVE AND LOW ENERGY ARCHITECTURE, 23., Geneva, 2006. Proceedings […]. Geneva: PLEA, 2006.

MUNICÍPIO de Vitória: Estado do Espírito Santo. [S. l.], 2020. Disponível em: https://www.cidade-brasil.com.br/. Acesso em: 10 jun. 2021.

NAKANO, A.; BUENO, B.; NORFORD, L.; REINHART, C. F. Urban Weather Generator - A novel workflow for integrating urban heat island effect within urban design process. In: INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION, 14., 2015. Proceedings […]. Hyderabad, 2015. p. 1901-1908. Disponível em: http://urbanmicroclimate.scripts.mit.edu/files/IBPSA_2015_Nakano.pdf. Acesso em: 20 mar. 2022.

NATANIAN, J.; KASTNER, P.; DOGAN, T.; AUER, T. From energy performative to livable Mediterranean cities: An annual outdoor thermal comfort and energy balance cross-climatic typological study. Energy & Buildings, v. 224, Oct. 2020. DOI: https://doi.org/10.1016/j.enbuild.2020.110283. DOI: https://doi.org/10.1016/j.enbuild.2020.110283

NOAA. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. National Weather Service: Experimental HeatRisk. 2021. Disponível em: https://www.wrh.noaa.gov/wrh/heatrisk/pdf/HeatRisk_More_Info_Web.pdf. Acesso em: 12 jan. 2022.

OKE, T. R; MILLS, G.; CHRISTEN, A.; VOOGT, J. A. Urban Climates. Cambridge: Cambridge University, 2017, 546 p. DOI: https://doi.org/10.1017/9781139016476

OTTONE, M. F.; COCCI GRIFONI, R.; MARCHESANI, G. E.; RIERA, D. Density - intensity. Material and immaterial elements in assessing urban quality. Journal of Technology for Architecture and Environment, v. 17, p. 278-288. 2019. Disponível em: https://oaj.fupress.net/index.php/techne/article/view/5064/5064. Acesso em: 20 jan. 2022. Artigo em inglês e italiano.

RAYMOND, C.; MATTHEWS, T.; HORTON, R. M. The emergence of heat and humidity too severe for human tolerance. Science Advances, v. 6, n. 19, 2020. DOI: https://doi.org/10.1126/sciadv.aaw1838. DOI: https://doi.org/10.1126/sciadv.aaw1838

RIBEIRO, S. K.; SANTOS, A. S. Mudanças Climáticas e Cidades. Relatório Especial do Painel Brasileiro de Mudanças Climáticas. Rio de Janeiro: COPPE – UFRJ, 2016. 116p. Disponível em: http://www.pbmc.coppe.ufrj.br/documentos/Relatorio_UM_v10-2017-1.pdf. Acesso em: 20 jan. 2022.

ROMERO, M. A. B. Princípios bioclimáticos para o desenho urbano. São Paulo: Proeditores, 2000, 128p.

SCHÄR, Christoph. The worst heat waves to come. Nature Climate Change, v. 6, p. 128-129. 2016. DOI: https://doi.org/10.1038/nclimate2864. DOI: https://doi.org/10.1038/nclimate2864

SHERWOOD, S. C.; HUBER, M. An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences. v. 107, n. 21, p. 9552–9555, Mar. 2010. DOI: https://doi.org/10.1073/pnas.0913352107. DOI: https://doi.org/10.1073/pnas.0913352107

SILVA, F. T.; ALVAREZ, C. E. An integrated approach for ventilation’s assessment on outdoor thermal comfort. Building and Environment, v. 87, p. 59-71, May 2015. DOI: https://doi.org/10.1016/j.buildenv.2015.01.018. DOI: https://doi.org/10.1016/j.buildenv.2015.01.018

SULLIVAN, J.; SANDERS, L. D. Method for obtaining wet-bulb temperature by modifying the psychrometric formula. Washington: Center for Experiment Design and Data Analysis: National Oceanic and Atmospheric Administration (NOAA). 1974. Disponível em: https://repository.library.noaa.gov/view/noaa/1388/noaa_1388_DS1.pdf. Acesso em: 21 mai 2021.

THORSSON, S.; RAYNER, D.; PALM, G.; LINDBERG, F.; CARLSTRÖM, E.; BÖRJESSON, M.; NILSON, F.; KHORRAM-MANESH, A.; HOLMER, B. Is physiological equivalent temperature (PET) a superior screening tool for heat stress risk than Wet-Bulb globe temperature (WBGT) index? Eight years of data from the Gothenburg half marathon. British Journal of Sports Medicine, v. 55, n. 1, 2020. DOI: https://doi.org/10.1136/bjsports-2019-100632. DOI: https://doi.org/10.1136/bjsports-2019-100632

TRIANA, M. A.; LAMBERTS, R.; SASSI, P. Should we consider climate change for brasilian social housing? Assessment of energy efficiency adaptation measures. Energy and Buildings, v. 158, p. 1379-1392, Jan. 2018. DOI: https://doi.org/10.1016/j.enbuild.2017.11.003. DOI: https://doi.org/10.1016/j.enbuild.2017.11.003

WMO. WORLD METEOROLOGICAL ORGANIZATION. State of the Global Climate 2020: Provisional Report. Geneva: WMO, 2020. 38 p. Disponível em: https://library.wmo.int/doc_num.php?explnum_id=10444. Acesso em: 20 maio 2021.

Downloads

Publicado

2022-06-27

Como Citar

LUGÃO, L. R.; SANTOS, J. S. A.; FRAGA, A. A.; NICO-RODRIGUES, E. A.; ALVAREZ, C. E. de. Os efeitos das mudanças climáticas nas condições de conforto térmico urbano. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, n. 00, p. e022022, 2022. DOI: 10.20396/parc.v13i00.8665827. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8665827. Acesso em: 9 dez. 2022.

Artigos mais lidos pelo mesmo(s) autor(es)