Banner Portal
Os efeitos das mudanças climáticas nas condições de conforto térmico urbano
PDF (English)


Mudanças climáticas
Ilha de calor
Conforto térmico urbano
Termorregulação humana

Como Citar

LUGÃO, L. R.; SANTOS, J. S. A.; FRAGA, A. A.; NICO-RODRIGUES, E. A.; ALVAREZ, C. E. de. Os efeitos das mudanças climáticas nas condições de conforto térmico urbano. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, n. 00, p. e022022, 2022. DOI: 10.20396/parc.v13i00.8665827. Disponível em: Acesso em: 23 fev. 2024.


Climate change is a global reality, leading to consequences for both the natural and urban environment. These changes and their implications can be perceived in features such as ecological cycles, in the economic status of a country, or on the well-being and physical integrity of a population. Hence, this study aimed to analyse the effects of climate change on urban thermal comfort and the physiological limits of a population in a tropical city, applying the Physiological Equivalent Temperature (PET) index and correlating it to the local wet-bulb temperature. The method adopted consists of four stages: (1) assembling weather files for future scenarios; (2) setting up scenarios for computational simulations; (3) choosing the most adequate urban thermal comfort index; and (4) selecting a risk parameter to evaluate human health risk. The results show that the presumed urban temperatures, considering 2050 and 2080 scenarios as parameters, can cause serious damage to inhabitants’ health, given the frequency of high temperatures recorded in some months of the year. Accordingly, it is clear that there is a need for balance between the temperature variables and relative air humidity is required, striving for better comfort conditions, as well as improving users' permanence in external environments.
PDF (English)


ASHRAE. AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. The ASHRAE Handbook of Fundamentals. Peachtree Corners: American Society of Heating, 2017. 1013 p.

BATHIANY, S.; DAKOS, V.; SCHEFFER, M.; LENTON, T. M. Climate models predict increasing temperature variability in poor countries. Science Advances, v. 4, n. 5, May 2018. DOI:

BUENO, B.; NORFORD, L.; HIDALGO, J.; PIGEON, G. The urban weather generator. Journal of Building Performance Simulation, v. 6, n. 4, p. 269-281. 2013. DOI: .

CLIMATE Change and Extreme Heat: What You Can Do to Prepare. Washington, DC: Environmental Protection Agency (EPA); Centre’s for Disease Control and Prevention (CDC). Oct. 2016. 20 p. Disponível em: Acesso em: 21 maio 2021.

COCCOLO, S.; KÄMPF, J.; SCARTEZZINI, J. L.; PEARLMUTTER, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, v. 18, p. 33-57, Dec. 2016. DOI:

CORREA, W. S. C. Campo térmico e higrométrico da Regional Praia do Canto no município de Vitória (ES). 2014. 165 p. Dissertação (Mestrado em Geografia) – Centro de Ciências Humanas e Naturais. Universidade Federal do Espírito Santo, Vitória, 2014. Disponível em: Acesso em: 15 mar. 2022.

DE LUCA, F.; NABONI, E.; LOBACCARO, G. Tall buildings cluster form rationalization in a Nordic climate by factoring in indoor-outdoor comfort and energy. Energy & Buildings, v. 238, p. 110831, May 2021. DOI:

EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Clima. Brasília: Embrapa, 2020 Disponível em: Acesso em: 13 nov. 2020.

EVOLA, G.; COSTANZO, V.; MAGRÌ, C.; MARGANI, G.; MARLETTA, L.; NABONI, E. A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues. Energy & Buildings, v. 216, p. 109946, June 2020. DOI:

FAHMY, M.; EL-HADY, H.; MAHDY, M.; ABDELALIM, M. F. On the green adaptation of urban developments in Egypt; predicting community future energy efficiency using coupled outdoor-indoor simulations. Energy and Buildings, v. 153, p. 241-261, Oct. 2017. DOI:

FERON, S.; CORDERO, R. R.; DAMIANI, A.; LLANILLO, P. J.; JORQUERA, J.; SEPULVEDA, E.; ASENCIO, D.; LAROZE, D.; LABBE, F.; CARRASCO, J.; TORRES, G. Observations and Projections of Heat Waves in South America. Scientific Reports, v. 9, 8173, June 2019. DOI:

FRANKENFIELD, D.; ROTH-YOUSEY, L.; COMPHER, C. Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese Adults: A Systematic Review. Journal of the American Dietetic Association, v. 105, n. 5, p. 775–789, May 2005. DOI:

GOOGLE. GOOGLE EARTH: Versão Pro. Mountain View: GOOGLE, 2019. Disponível em: Acesso em: 20 nov. 2019.

GUARDA, E. L. A.; DOMINGOS, R. M. A.; JORGE, S. H. M.; DURANTE, L. C.; SANCHES, J. C. M. LEÃO, M.; CALLEJAS, I. J. A. The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities and Society, v. 52, p. 101843, Jan. 2020. DOI:

HÖPPE, P. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, v. 43, p. 71–75, Oct. 1999. DOI:

INMET. INSTITUTO NACIONAL DE METEOROLOGIA. Clima. Normais climatológicas. Gráficos. Brasília: INMET, 2020. Disponível em: Acesso em: 13 nov. 2020.

IPCC. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Brussels: IPCC, 2007. 996 p. Disponível em: Acesso em: 08 nov. 2019.

JENTSCH, M. F.; JAMES, P. A. B.; BOURIKAS, L.; BAHAJ, A. S. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, v. 55, p. 514-524, July 2013. DOI:

KRÜGER, E. L.; ROSSI, F. A.; CRISTELI, P. S. SOUZA, H. A. Calibração do índice de conforto para espaços externos Physiological Equivalent Temperature (PET) para Curitiba. Ambiente Construído, v. 18, n. 3, p. 135-148, jul./set. 2018. DOI:

LABEEE. LABORATÓRIO DE EFICIÊNCIA ENERGÉTICA EM EDIFICAÇÕES. Arquivos climáticos INMET 2018. Florianópolis: UFSC, 2019. Disponível em: Acesso em: 20 jun. 2021.

LAPOLA, D. M.; SILVA, J. M. C.; BRAGA, D. R.; CARPIGIANI, L.; OGAWA, F.; TORRES, R. R.; BARBOSA, L. C. F.; OMETTO, J. P. H. B.; JOLY, C. A. A climate‐change vulnerability and adaptation assessment for Brazil's protected areas. Conservation Biology, v. 34, n. 2, p. 427-437, Aug. 2019. DOI:

LIMA, I.; SCALCO, V.; LAMBERTS, R. Estimating the impact of urban densification on high-rise office building cooling loads in a hot and humid climate. Energy & Buildings, v. 182, p. 30-44, Jan. 2019. DOI:

LIN, T. P.; MATZARAKIS, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, v. 52, p. 281–290, Oct. 2008. DOI:

LUCARELLI, C. C.; CARLO, J. C.; MARTINEZ, A. C. P. Otimização baseada em simulação para uma cobertura inspirada em origami. PARC Pesquisa em Arquitetura e Construção, v. 11, ago. 2020. DOI:

LUCCHESE, J. R.; MIKURI, L. P.; FREITAS, N. V. S.; ANDREASI, W. A. Application of Selected Indices on Outdoor Thermal Comfort Assessment in Midwest Brazil. International Journal of Science and Engineering Investigations, v. 7, n. 4, p. 291-302, 2016. Disponível em: Acesso em: 20 jan. 2022.

MATZARAKIS, A.; MAYER, H.; IZIOMON, M. G. Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, v. 43, p. 76–84, Oct. 1999. DOI:

MAUREE, D.; NABONI, E.; COCCOLO, S.; PERERA, A. T. D.; VAHID, M. N.; SCARTEZZINI, J. L. A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, v. 112, p. 733-746, Sept. 2019. DOI:

MONTEIRO, L. M.; ALUCCI, M. P. Calibration of Outdoor Thermal Comfort Models. In: CONFERENCE ON PASSIVE AND LOW ENERGY ARCHITECTURE, 23., Geneva, 2006. Proceedings […]. Geneva: PLEA, 2006.

MUNICÍPIO de Vitória: Estado do Espírito Santo. [S. l.], 2020. Disponível em: Acesso em: 10 jun. 2021.

NAKANO, A.; BUENO, B.; NORFORD, L.; REINHART, C. F. Urban Weather Generator - A novel workflow for integrating urban heat island effect within urban design process. In: INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION, 14., 2015. Proceedings […]. Hyderabad, 2015. p. 1901-1908. Disponível em: Acesso em: 20 mar. 2022.

NATANIAN, J.; KASTNER, P.; DOGAN, T.; AUER, T. From energy performative to livable Mediterranean cities: An annual outdoor thermal comfort and energy balance cross-climatic typological study. Energy & Buildings, v. 224, Oct. 2020. DOI:

NOAA. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. National Weather Service: Experimental HeatRisk. 2021. Disponível em: Acesso em: 12 jan. 2022.

OKE, T. R; MILLS, G.; CHRISTEN, A.; VOOGT, J. A. Urban Climates. Cambridge: Cambridge University, 2017, 546 p.

OTTONE, M. F.; COCCI GRIFONI, R.; MARCHESANI, G. E.; RIERA, D. Density - intensity. Material and immaterial elements in assessing urban quality. Journal of Technology for Architecture and Environment, v. 17, p. 278-288. 2019. Disponível em: Acesso em: 20 jan. 2022. Artigo em inglês e italiano.

RAYMOND, C.; MATTHEWS, T.; HORTON, R. M. The emergence of heat and humidity too severe for human tolerance. Science Advances, v. 6, n. 19, 2020. DOI:

RIBEIRO, S. K.; SANTOS, A. S. Mudanças Climáticas e Cidades. Relatório Especial do Painel Brasileiro de Mudanças Climáticas. Rio de Janeiro: COPPE – UFRJ, 2016. 116p. Disponível em: Acesso em: 20 jan. 2022.

ROMERO, M. A. B. Princípios bioclimáticos para o desenho urbano. São Paulo: Proeditores, 2000, 128p.

SCHÄR, Christoph. The worst heat waves to come. Nature Climate Change, v. 6, p. 128-129. 2016. DOI:

SHERWOOD, S. C.; HUBER, M. An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences. v. 107, n. 21, p. 9552–9555, Mar. 2010. DOI:

SILVA, F. T.; ALVAREZ, C. E. An integrated approach for ventilation’s assessment on outdoor thermal comfort. Building and Environment, v. 87, p. 59-71, May 2015. DOI:

SULLIVAN, J.; SANDERS, L. D. Method for obtaining wet-bulb temperature by modifying the psychrometric formula. Washington: Center for Experiment Design and Data Analysis: National Oceanic and Atmospheric Administration (NOAA). 1974. Disponível em: Acesso em: 21 mai 2021.

THORSSON, S.; RAYNER, D.; PALM, G.; LINDBERG, F.; CARLSTRÖM, E.; BÖRJESSON, M.; NILSON, F.; KHORRAM-MANESH, A.; HOLMER, B. Is physiological equivalent temperature (PET) a superior screening tool for heat stress risk than Wet-Bulb globe temperature (WBGT) index? Eight years of data from the Gothenburg half marathon. British Journal of Sports Medicine, v. 55, n. 1, 2020. DOI:

TRIANA, M. A.; LAMBERTS, R.; SASSI, P. Should we consider climate change for brasilian social housing? Assessment of energy efficiency adaptation measures. Energy and Buildings, v. 158, p. 1379-1392, Jan. 2018. DOI:

WMO. WORLD METEOROLOGICAL ORGANIZATION. State of the Global Climate 2020: Provisional Report. Geneva: WMO, 2020. 38 p. Disponível em: Acesso em: 20 maio 2021.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 PARC Pesquisa em Arquitetura e Construção


Não há dados estatísticos.