Banner Portal
Contribuições para a qualidade do ar interior em salas de aula pós pandemia de COVID-19
Neste volume apresentamos na capa a Residência para professores em Gando, Burkina Faso. Projetada por Francis Kéré. Imagem do Wikimedia Commons
PDF

Palavras-chave

Covid-19
Escolas
Qualidade do ar interior
Sistemas de ventilação

Como Citar

SILVA, Saulo Vieira de Oliveira; PAGEL, Érica Coelho. Contribuições para a qualidade do ar interior em salas de aula pós pandemia de COVID-19. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 14, n. 00, p. e023006, 2023. DOI: 10.20396/parc.v14i00.8670256. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8670256. Acesso em: 24 abr. 2024.

Resumo

No final de 2019 surgiu uma nova doença provocada pelo SARS-CoV-2 e, em seguida, foi declarada pandemia pela Organização Mundial de Saúde. Tal fato, implicou em inúmeras restrições, dentre elas, o fechamento de escolas em diversos países. Com o retorno gradual das atividades de ensino, os estabelecimentos se viram obrigados a adotarem protocolos de prevenção. O objetivo deste trabalho foi levantar, na literatura científica, as formas de contaminação de pessoa para pessoa em ambientes interiores, com foco em salas de aula, bem como identificar as diferentes estratégias propostas para redução do risco de infecção dos usuários, sobretudo no que se refere à ventilação e ações para a mitigação da transmissão do vírus em escolas. A metodologia adotada foi a Revisão Sistemática da Literatura (RSL), que partiu de uma seleção de artigos junto aos portais PubMed e Portal de Periódicos da CAPES, resultando na análise de 52 documentos. Como resultados, identificou-se que as partículas aéreas emitidas por indivíduos infectados possuem grande variação de tamanho e alcance, o que diversifica a possibilidade de contágio. Os trabalhos indicaram a necessidade do incremento da ventilação natural por meio da abertura constante de janelas e portas; do aumento das taxas de renovação do ar interno, sem recirculação; do uso de filtros de alta eficiência para eliminação das partículas contaminadas e da necessidade de preocupações que visem ambientes escolares saudáveis, tanto durante situações pandêmicas quanto não pandêmicas. A pandemia reforçou a importância da temática da qualidade do ar de interiores nos estudos de arquitetura e construção.

https://doi.org/10.20396/parc.v14i00.8670256
PDF

Referências

AAP. AMERICAN ACADEMY OF PEDIATRICS. COVID-19 Guidance for Safe Schools. 2021. Disponível em: https://services.aap.org/en/pages/2019-novel-coronavirus-Covid-19-infections/clinical-guidance/Covid-19-planning-considerations-return-to-in-person-education-in-schools/. Acesso em: 20 nov. 2022.

ALLEN, Joseph G.; IBRAHIM, Andrew M. Indoor Air Changes and Potential Implications for SARS-Cov-2 Transmission. JAMA, v. 325, n. 20, p. 2112-2113, May 2021. DOI: https://doi.org/10.1001/jama.2021.5053.

ALMEIDA, Ricardo M. S. F.; PINTO, M.; PINHO, P.; LEMOS, L. T. Natural ventilation and indoor air quality in educational buildings: experimental assessment and improvement strategies. Energy Efficiency, v. 10, p. 839-854, October 2017. DOI: https://doi.org/10.1007/s12053-016-9485-0.

ALONSO, Alicia; LLANOS, J.; ESCANDÓN, R.; SENDRA, J. J. Effects of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort of Primary Schools in Winter in a Mediterranean Climate. Sustainability, v. 13, n. 5, p. 2699, Marc. 2021. DOI: https://doi.org/10.3390/su13052699.

ANSI-ASHRAE. AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. Standard 62.1 - 2019: Ventilation for Acceptable Indoor Air Quality. Atlanta: ANSI-ASHRAE, 2019.

ANVISA. Agência Nacional de Vigilância Sanitária. Resolução-RE n°09, de 16 de janeiro de 2003. Brasília: ANVISA, 2003. Disponível em: https://www.saude.mg.gov.br/images/documentos/RES_RE_09.pdf. Acesso em: 12 fev. 2020.

ASANATI, Kaveh; VODEN, Louise; MAJEED, Azeem. Healthier schools during the COVID-19 pandemic: ventilation, testing and vaccination. Journal of the Royal Society of Medicine, v. 114, n. 4, Feb. 2021. DOI: https://doi.org/10.1177/0141076821992449.

AZUMA, Kenichi.; UNAGI, U.; KAGI, N.; KIM, H.; OGATA, M.; HAYASHI, M. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environmental Health and Preventive Medicine, v. 25, n. 66, Nov. 2020. DOI: https://doi.org/10.1186/s12199-020-00904-2.

BALOCCO, Carla; LEONCINI, Lorenzo. Energy Cost for Effective Ventilation and Air Quality for Health Buildings: Plant Proposals for a Historic Building School Reopening in the Covid-19 Era. Sustainability, v. 12, n. 20, Oct. 2020. DOI: https://doi.org/10.3390/su12208737.

BECERRA, Jose A.; LIZANA, J.; GIL, M.; BARRIOS-PADURA, A.; BLONDEAU, P.; CHACARTEGUI, R. Identification of potential indoor air pollutants in schools. Journal of Cleaner Production, v. 242, Jan. 2020. DOI: https://doi.org/10.1016/j.jclepro.2019.118420.

BEGGS, Clive B.; AVITAL, Eldad J. Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: a feasibility study. PeerJ, v. 8: e10196, 13 Oct. 2020. DOI: https://doi.org/10.7717/peerj.10196.

BHAGAT, Rajesh K.; WYKES, M. S.; DALZIEL, S. B.; LINDEN, P. F. Effects of ventilation on the indoor spread of COVID-19. Journal of Fluid Mechanics, v. 903, F1, Sept. 2020. DOI: https://doi.org/10.1017/jfm.2020.720.

BIRMILI, Wolfram et al. Lüftungskonzepte in Schulen zur Prävention einer Übertragung hochinfektiöser Viren (SARSCoV-2) über Aerosole in der Raumluft. Bundesgesundheitsbl, v. 64, p. 1570-1580, Nov. 2021. DOI: https://doi.org/10.1007/s00103-021-03452-4.

BOGDANOVICA, Snezana; ZEMITIS, Jurgis; BOGDANOVICS, Raimonds. The Effect of CO2 Concentration on Children’s Well-Being during the Process of Learning. Energies, v. 13, n. 22, Nov. 2020. DOI: https://doi.org/10.3390/en13226099.

BRDARIĆ, D.; CAPAK, K.; GVOZDIĆ, V.; BARIŠIN, A.; JELINIĆ, J. J.; EGOROV, A.; ŠAPINA, M.; KALAMBURA, S.; KRAMARIĆ, K. Indoor carbon dioxide concentrations in Croatian elementary school classrooms during the heating season. Arh Hig Rada Toksikol, v. 70, n. 4, p. 296-302, Dec. 2019. DOI: https://doi.org/10.2478/aiht-2019-70-3343.

BUENO, F. T. C.; SOUTO, E. P.; MATTA, G. C. Notas sobre a trajetória da Covid-19 no Brasil. In: MATTA, G.C.; REGO, S.; SOUTO, E. P.; SEGATA, J. (ed.). Os impactos sociais da Covid-19 no Brasil: populações vulnerabilizadas e respostas à pandemia [online]. Rio de Janeiro: Observatório Covid 19; FIOCRUZ, 2021. p. 27-39. DOI: https://doi.org/10.7476/9786557080320.0002.

CAMMARATA, Alessandro; CAMMARATA, Giuliano. Dynamic assessment of the risk of airborne viral infection. Indoor Air, v. 31, n. 6, p. 1759-1775, July 2021. DOI: https://doi.org/10.1111/ina.12862.

CAPES. PORTAL DE PERIÓDICOS DA CAPES. Quem somos. Periódicos. Brasília: CAPES, 2022. Disponível em: https://www-periodicos-capes-gov-br.ezl.periodicos.capes.gov.br/index.php/sobre/quem-somos.html. Acesso em 23 nov. 2022.

CDC. CENTER FOR DISEASE CONTROL AND PREVENTION. Ventilation in Buildings. Atlanta: CDC, 02 jun. 2021. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html. Acesso em: 20 jan. 2022.

CEN. COMITÉ EUROPÉEN DE NORMALISATION. EN 16798-1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Bruxelles: CEN, 2019.

CHEN, P. Z.; BOBROVITZ, N.; PREMJI, Z.; KOOPMANS, M.; FISMAN, D; N.; GU, F. X. Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and aerosols. eLife, v. 10 p. e65774, Apr. 2021a. DOI: https://doi.org/10.7554/eLife.65774.

CHEN, Qingyan. Can we migrate COVID-19 spreading risk? Frontiers of environmental Science & Engineering, 2021, v. 15, n. 35, 2021b. DOI: https://doi.org/10.1007/s11783-020-1328-8.

CHILLON, Sergio A.; MILLAN, M.; ARAMENDIA, I.; FERNANDEZ-GAMIZ, U.; ZULUETA, E.; MENDAZA-SAGASTIZABAL, X. Natural Ventilation Characterization in a Classroom under Different Scenarios. International Journal of Environmental Research and Public Health, v. 18, n. 10, May 2021. DOI: https://doi.org/10.3390/ijerph18105425.

CIOTTI, M.; CICCOZZI, M.; TERRINONI, A.; JIANG, W.; WANG, C.; BERNARDINI, S. The COVID-19 pandemic. Critical Reviews in Clinical Laboratory Sciences, v. 57, n. 6, Special issue: COVID-10 Pandemic and Critical Role of the Clinical Laboratory, p. 365-388, 2020. DOI: https://doi.org/10.1080/10408363.2020.1783198.

COLEY, David A.; GREEVES, R.; SAXBY, Brian K. The Effect of Low Ventilation Rates on the Cognitive Function of a Primary School Class. International Journal of Ventilation, v. 6, n. 2, p. 107-112, 2007. DOI: https://doi.org/10.1080/14733315.2007.11683770.

COMBER, L.; MURCHU, E. O.; DRUMMOND, L.; CARTY, P. G.; WALSHI, K. A.; DE GASCUN, C. F.; CONNOLLY, M. A.; SMITH, S. M.; O’NEILL M. Airborne transmission of SARS-CoV-2 via aerosols. Reviews in Medical Virology, v. 31, n. 3, Oct. 2020. DOI: https://doi.org/10.1002/rmv.2184.

DAI, Hui; ZHAO, Bin. Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Build Simulation, v. 13, p. 1321-1327, 2020. DOI: https://doi.org/10.1007/s12273-020-0703-5.

DAWSON, P. (org.). Pilot Investigation of SARS-CoV-2 Secondary Transmission in Kindergarten Through Grade 12 Schools Implementing Mitigation Strategies – St. Louis County and City of Springfield, Missouri, December 2020. Morbidity and Mortality Weekly Report, v. 70, n. 12, p. 449-455, 26 Mar. 2021. DOI: http://dx.doi.org/10.15585/mmwr.mm7012e4.

DELIKHOON, M.; GUZMAN, M. I.; NABIZABEDEH, R.; BAGHANI, A. N. Modes of Transmission of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) and Factors Influencing on the Airborne Transmission: A Review. International Journal of Environmental Research and Public Health, v. 18, n. 2, Jan. 2021. DOI: https://doi.org/10.3390/ijerph18020395.

DENG, Xi.; GONG, G.; HE, X.; SHI, X.; MO, L. Control of exhaled SARS-CoV-2-laden aerosols in the interpersonal breathing microenvironment in a ventilated room with limited space air stability. Journal of Environment Sciences, v. 108, p. 175-18, 2021. DOI: https://doi.org/10.1016/j.jes.2021.01.025.

DI GILIO, A.; PALMISANI, J.; PILIMENO, M.; CERINO, F.; CACACE, M.; MIANI, A.; DE GENNERO, G. CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environmental Research, v. 202, Nov. 2021. DOI: https://doi.org/10.1016/j.envres.2021.111560.

DUILL, Finn F.; SCHULZ, F.; JAIN, A.; KRIEGER, L.; VAN WACHEM, B.; BEYRAU, F. The Impact of Large Mobile Air Purifiers on Aerosol Concentration in Classrooms and the Reduction of Airborne Transmission of SARS-CoV-2. International Journal of Environmental Research and Public Health, v. 18, v. 21, Nov. 2021. DOI: https://doi.org/10.3390/ijerph182111523.

EHRHARDT, j.; EKINCI, A.; KREHL, H.; MEINCKE, M.; FINCI, I.; KLEIN, J.; GEISEL, B.; WAGNER-WIEMIMG, C.; EEICHNER, M.; BROCKMANN, S. Transmission of SARS-CoV-2 in children ged 0 to 19 years in childcare facilities and schools after their reopening in May 2020, Baken-Württemberg, Germany. Euro Surveill, v. 25, n. 36, Set. 2020. DOI: https://doi.org/10.2807/1560-7917.ES.2020.25.36.2001587.

FOUCHER, Gérard; FAURE, Sébastien. What is Covid-19? Actualitése Pharmaceutiques, v. 60, n. 602, p. 59-61, Jan. 2021. DOI: https://doi.org/10.1016/j.actpha.2020.11.015.

GABRIEL, Marta; PACIÊNCIA, I.; FELGUEIRAS, F.; RUFO, J. C.; MENDES, F. C.; FARRAIA, M.; MOURÃO, Z.; MOREIRA, A.; FERNANDES, E. O. Environmental quality in primary schools and related health effects in children. An overview of assessments conducted in the Northern Portugal. Energy & Buildings, v. 250, 111305, Nov. 2021. DOI: https://doi.org/10.1016/j.enbuild.2021.111305.

GALVÃO, Maria C. B.; RICARTE, Ivan L. M. Revisão Sistemática da Literatura: Conceituação, Produção e Publicação. LOGEION Filosofia da Informação, v. 6, n. 1, p. 57-73, 2019. DOI: https://doi.org/10.21728/logeion.2019v6n1.p57-73.

GAQS. GENERAL ADMINISTRATION OF QUALITY SUPERVISION. Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. GB/T 17226-2017: Hygienic requirements of classroom ventilation in middle and elementary school. Beijing: Standards Press of China, 2017.

GARCÍA DE ABAJO, F; JAVIER HERNÁNDEZ, R.; KAMINER, I.; MEYERHANS, A.; ROSELL-LLOMPART, J.; SANCHEZ-ELSNER, T. Back to Normal: An old Physics Rout to Reduce SARS-CoV-2 Transmission in Indoor Spaces. ACS Nano, v. 14, n. 7, p. 7704-7713, June. 2020. DOI: https://doi.org/10.1021/acsnano.0c04596.

GETTINGS, J. (org.). Mask Use and Ventilation Improvements to Reduce COVID-19 Incidence in Elementary Schools – Georgia, November 16-December 11, 2020. Morbidity and Mortality Weekly Report, v. 70, n. 21, p. 779-784, May 2021. DOI: https://doi.org/10.15585/mmwr.mm7021e1.

GODWIN, L.; HAYWARD, T.; KRISHAN, P.; NOLAN, G.; NUNDY, M.; OSTRISHKO, K. et al. Which factors influence the extent of indoor transmission of SARS-Cov-2? A rapid evidence review. Journal of Global Health, v. 11, 10002, 2021. DOI: https://doi.org/10.7189/jogh.11.10002.

HONEIN, Margaret A. (org.). Summary of Guidance for Public Health Strategies to Address High Levels of Community Transmission of SARS-CoV-2 and Related Deaths, December 2020. Morbidity and Mortality Weekly Report (MMWR), v. 69, n. 49, p. 1860-1867, 2020. DOI: http://dx.doi.org/10.15585/mmwr.mm6949e2.

INEP. INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA. Resposta Educacional à Pandemia de Covid-19 no Brasil. Censo escolar 2020. Brasília: INEP, 2021. Disponível em: https://download.inep.gov.br/censo_escolar/resultados/2021/apresentacao_pesquisa_covid19_censo_escolar_2021.pdf. Acesso em: 20 out. 2022.

INEP. INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA. Média de Horas-aula diária. Brasília: INEP, 2019. Disponível em: https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/indicadores-educacionais/media-de-horas-aula-diaria.

INEP. INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA. Pesquisa Resposta Educacional à Pandemia de Covid-19 no Brasil em 2021. Brasília: INEP, 2022. Disponível em: https://www.gov.br/inep/pt-br/assuntos/noticias/censo-escolar/pesquisa-revela-resposta-educacional-a-pandemia-em-2021.

JAN, Rohi, ROY, R.; YADAV, S.; SATSANGI, G. Exposure assessment of children to particulate matter and gaseous species in school environments of Pune, India. Building and Environment, v. 111, p. 207-217, Jan. 2017. DOI: http://dx.doi.org/10.1016/j.buildenv.2016.11.008.

JARVIS, Michael C. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications. Frontiers in Public Health, v. 8, 590041, Nov. 2020. DOI: https://doi.org/10.3389/fpubh.2020.590041.

KAPOOR, Nishant Raj; KUMAR, A.; MEENA, C.CS.; KUMAR, A.; ALAM, T.; BALAM, N. B.; GHOSH, A. A Systematic Review on Indoor Environmental Quality in Naturally Ventilated School Classrooms: A Way Forward. Advances in Civil Engineering, v. 2021, p. 1-19, Feb. 2021. DOI: https://doi.org/10.1155/2021/8851685.

KULO, Aida; KARIĆ, S.; ĆETKOVIĆ, A.; BLEKIĆ, A.; KUSTURICA, J.; SPAHIĆŠ, N.; ŠLIJVO, A.; ŠEČIĆ, D. School Children Exposure to low Indoor Air Quality in classrooms during Covid-19 Pancemic: results of a pilot study. Psychiatria Danubina, v. 33, suppl. 3, p. 318-330, May 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34010257/.

LAM-HINE, Tracy; LAM-HINE, T.; MCCURDY, S. A.; SANTORA, L.; DUNCAN, L.; CORBERT-DETIG, R.; KAPUSINSKY, B.; WILLIS, M. Outbreak Associated with SARS-CoV-2 B.1.617.2 (Delta) Variant in an Elementary School – Marin County, California, May-June 2021. Morbidity and Mortality Weekly Report, v. 70, n. 35, p. 1214-1219, Sept. 2021. DOI: https://doi.org/10.15585/mmwr.mm7035e2.

LAZOVIC, Ivan M.; STEVANOVIĆ, Z. M.; JOVAŠEVIC-STOJANOVIĆ, M. V.; ŽIVKOVIĆ, M. M.; BANJAC, M. J. Impact of CO2 concentration on Indoor Air Quality and correlation with relative humidity and indoor air temperature in school buildings in Serbia. Thermal Science, v. 20, Supl. n. 1, p.297-307, 2016. DOI: https://doi.org/10.2298/TSCI150831173L.

LOU, Jinxiu; WANG, W.; LU, H.; WANG, L.; ZHU, L. Increase disinfection byproducts in the air resulting from intensified disinfection during the COVID-19 pandemic. Journal of Hazardous Materials, v. 418, 126249, Sept. 2021. DOI: https://doi.org/10.1016/j.jhazmat.2021.126249.

LOVEC, Vesna; PREMROV, Miroslav; LESKOVAR, Vesna Z. Practical Impact of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort in Kindergartens. A Case Study of Slovenia. International Journal of Environmental Research and Public Health, v. 18, n. 18, Sept. 2021. DOI: https://doi.org/10.3390/ijerph18189712.

MA, Fusheng; ZHAN, Changhong; XU, Xiaoyang. Investigation and Evaluation of Winter Indoor Air Quality of Primary Schools in Severe Cold Weather Areas of China. Energies, v. 12, n. 9, p. 1602, Apr. 2019. DOI: https://doi.org/10.3390/en12091602.

MAINKA, Anna; ZAJUSZ-ZUBEK, Elwira. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: particulate matter and carbon dioxide. International journal of environmental research and public health, v. 12, n. 7, p.7697-7711, July 2015. DOI: https://doi.org/10.3390/ijerph120707697.

MEISS, Alberto; JIMENO-MERINO, H.; POZA-CASADO, I.; LLORENTE-ÀLVAREZ, A.; PADILLA-MARCOS, M. Indoor Air Quality in Naturally Ventilated Classrooms. Lessons Learned from a Case Study in a COVID-19 Scenario. Sustainability, v. 13, n. 15, p. 8446, July 2021b. DOI: https://doi.org/10.3390/su13158446.

MEISS, Alberto; POZA-CASADO, I.; LLORENTE-ÀLVAREZ, A.; JIMENO-MERINO, H.; PADILLA-MARCOS, M. A. Implementation of a Ventilation Protocol for SARS-CoV-2 in Higher Educational Centre. Energies, v. 14, n. 19, p. 6172, Sept. 2021a. DOI: https://doi.org/10.3390/en14196172.

MELGAR, Sérgio G.; SÁNCHEZ CORDERO, A.; VIDERAS RODRÍGUEZ, M.; ANDÚJAR MÁRQUEZ, J. Influence on indoor comfort due to the application of Covid-19 natural ventilation protocols for schools at subtropical climate during winter season. E3S Web of Conferences, v. 293, p. 01031, July 2021. DOI: https://doi.org/10.1051/e3sconf/202129301031.

MITCHELL, John W.; BRAUN, James E. Princípios de Aquecimento, Ventilação e Condicionamento de Ar em Edificações. Rio de Janeiro: LTC, 2018. 572 p.

MONGE-BARRIO, Aurora; BES-RASTROLLO, M.; DORREGARAY-OYAREGUI, S.; GONZÁLEZ-MARTÍNEZ, P.; MARTIN-CALVO, N.; LÓPEZ-HERNÁNDEZ, D.; ARRIAZU-RAMOS, A.; SÁNCHEZ-OSTIZ, A. Encouraging natural ventilation to improve indoor environmental conditions at schools. Case studies in the north of Spain before and during COVID. Energy & Buildings, v. 254, p. 111567, Jan. 2022. DOI: https://doi.org/10.1016/j.enbuild.2021.111567.

MORAWSKA, Lidia; CAO, Junji. Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, v. 139, 10730, June 2020. DOI: https://doi.org/10.1016/j.envint.2020.105730.

MUSCATIELLO, N.; MACCARTHY, A.; KIELB, C.; HSU, W. H.; HWANG, S. A.; LIN, H. S. Classroom conditions and CO2 concentrations and teacher health symptom reporting in 10 New York State Schools. Indoor Air, v. 25, n. 2, p. 157-167, June 2014. DOI: https://doi.org/10.1111/ina.12136.

OBERST, M.; KLAR, T.; HEINRICH, A. Der Effekt von mobilen Luftfiltersystemen auf die Aerosolbelastung in Großraumszenarien vor dem Hintergrund des Infektionsrisikos der COVID-19-Erkrankung. Kann die Präsenzlehre wieder aufgenommen werden? Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie, v. 71, p. 20-212, May 2021. DOI: https://doi.org/10.1007/s40664-021-00435-9.

OPAS. ORGANIZAÇÃO PAN-AMERICANA DA SAÚDE. OMS declara emergência de saúde pública de importância internacional por surto de novo coronavírus. Washington: OPAS, 2020. Disponível em: https://www.paho.org/pt/news/30-1-2020-who-declares-public-health-emergency-novel-coronavirus. Acesso em: 20 out. 2021.

PAVILONIS, Brian; IERARDI, A. M.; LEVINE, L.; MIRER, F.; KELVIN, E. A. Estimating aerosol trasmission risk of SARS-CoV-2 in New York City public schools during reopening. Environmental Research, v. 195, 110805, Apr. 2021. DOI: https://doi.org/10.1016/j.envres.2021.110805.

PMC. PUBMED CENTRAL. About PMC. Bethesda: PMC, 2022. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/about/intro/. Acesso em: 23 nov. 2022.

PORTUGAL. Portaria n. º 349-D/2013. 2 de dezembro de 2013: aprova o Regulamento de Desempenho Energético dos Edifícios de Comércio e Serviços (RECS). Diário da República, 1.ª série, nº 233, Lisboa, 2013.

PREDESCU, Laurentiu; DUNEA, Daniel. Performance Evaluation of Particulate Matter and Indoor Microclimate Monitors in University Classrooms under COVID-19 Restrictions. International Journal of Environmental Research and Public Health, v. 18, n. 14, 7363, July 2021. DOI: https://doi.org/10.3390/ijerph18147363.

ROCHA-MELOGNO, Lucas; CRANK, K.; BERGIN, M. H.; GRAY, G. C.; BIBBY, K.; DESHUSSES, M. A. Quantitative risk assessment of COVID-19 aerosol transmission indoors: a mechanistic stochastic web application. Environmental Technology, Nov. 2021. DOI: https://doi.org/10.1080/09593330.2021.1998228.

SATISH, U.; MENDELL, M. J.; SHEKHAR, K.; HOTCHI, T.; SULLIVAN, D.; STREUFERT, S.; FISK, W. J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environmental health perspectives, v.120, n.12, p. 1671–1677, Nov. 2012. DOI: https://doi.org/10.1289/ehp.1104789.

SCHIBUOLA, Luigi; SCARPA, Massimiliano; TAMBANI, Chiara. Natural ventilation level assessment in a school building by CO2 concentration measures. Energy Procedia, v.101, p. 257-264, Nov. 2016. DOI: https://doi.org/10.1016/j.egypro.2016.11.033.

SCHIBUOLA, Luigi; TAMBANI, Chiara. High energy efficiency to limit COVID-19 contagion in school environments. Energy and Buildings, v. 240, 110882, June 2021. DOI: https://doi.org/10.1016/j.enbuild.2021.110882 .

SCHUCHMANN, Alexandra Z.; SCHNORRENBERGER, B. L.; CHIQUETTI, M. E.; GAIKI, R. S.; RAIMANN, B. W.; MAEYAMA, M. A. Isolamento social vertical X Isolamento social horizontal: os dilemas sanitários e sociais no enfrentamento da pandemia de COVID-19. Brazilian Journal of Health Review, v. 3, n. 2, p. 3556-3576, mar./abr. 2020. DOI: https://doi.org/10.34119/bjhrv3n2-185.

SCOTFORD, Eloise. Rethinking Clean Air: Air Quality Law and COVID-19. Journal of Environmental Law, v. 32, n. 3, p. 349-353, Nov. 2020. DOI: https://doi.org/10.1093/jel/eqaa027.

SHAMSI, Salman; ZAMAN, K.; USMAN, B.; NASSANI, A. A.; HAFFAR, M.; ABRO, M. M. Q. Do environmental pollutants carrier to COVID-19 pandemic? A cross-sectional analysis. Environmental Science and Pollution Research, v. 29, p. 17530-17543. Oct. 2022. DOI: https://doi.org/10.1007/s11356-021-17004-5.

SHENDELL, D. G.; PRILL, R.; FISK, W. J.; APTE, M. G.; BLAKE, D.; FALULKNER, D. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air, v. 14, n. 5, p. 333-3341, May 2004. DOI: https://doi.org/10.1111/j.1600-0668.2004.00251.x.

SILVA, S. V. O.; PAGEL, E. C.; BASTOS, L. E. G.; MARCONSINI, C. Ventilação natural e qualidade do ar em salas de aula: revisão sistemática da literatura. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, p. e022021, 2022. DOI: http://dx.doi.org/10.20396/parc.v13i00.8666284.

SOUSA, Marcos R.; RIBEIRO, Antonio L. P. Revisão Sistemática e Meta-análise de Estudos de Diagnóstico e Prognóstico: um Tutorial. Arquivos Brasileiros de Cardiologia, v. 92, n. 3, p. 241-251, mar. 2009. DOI: https://doi.org/10.1590/S0066-782X2009000300013.

STABILE, L.; PACITO, A.; MIKSZEWSKI, A.; MORAWSKA, L.; BUONANNO, G. Ventilation procedures to minimize the airborne transmission of viruses in classrooms. Building and Environment, v. 202, 108042, Sept. 2021. DOI: https://doi.org/10.1016/j.buildenv.2021.108042.

STABILE, Luca; DELL’ISOLA, M.; RUSSI, A.; MASSIMO, A.; BUONANNO, G. The effect of natural ventilation strategy on indoor air quality in schools. Science of the Total Environment, v. 595, p. 894-902, Oct. 2017. DOI: http://dx.doi.org/10.1016/j.scitotenv.2017.03.048.

TANG, J. W.; BAHNFLETH, W. P.; BLUYSSEN, P. M.; TELLER, R.; WARGOCKI, P.; DANCER, S. J. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The Journal of Hospital Infection, v. 110, p. 89-96, Jan. 2021. DOI: https://doi.org/10.1016/j.jhin.2020.12.022.

TAYPE, L. E.; DEZEN-KEMPTER, E. Contribuição de BIM para a segurança laboral na construção civil: uma revisão sistemática de literatura. PARC Pesquisa em Arquitetura e Construção, v. 11, p. e020002, mar. 2020. DOI: https://doi.org/10.20396/parc.v11i0.8653811.

TRILLES, Sergio; JUAN, P.; CHAUDHURI, S.; FORTEA, A. B. V. Data on CO2, temperature and air humidity records in Spanish classrooms during the reopening of schools in the COVID-19 pandemic. Data in Brief, v. 39, 107489, Dec. 2021. DOI: https://doi.org/10.1016/j.dib.2021.107489.

UK. UNITED KINGDON GOVERNMENT. Building Bulletin 101 - 2018. Guidelines on ventilation, thermal comfort and indoor air quality in schools. London: UK, 2018.

UNESCO. UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION. Situação da educação no Brasil (por região/estado – nov. 2021). Brasília: UNESCO, 2021. Disponível em: https://pt.unesco.org/fieldoffice/brasilia/covid-19-education-Brasil#:~:text=2021),-%C3%97&text=Suspensas%20desde%20mar%C3%A7o%20de%202020,brasileiros%20at%C3%A9%20maio%20de%202021. Acesso em: 20 dez. 2021.

VASSELA, Claudia C.; KOCH, J.; HENZI, A.; JORDAN, A.; WAEBER, R.; IANNACCONE, R.; CHARRIÈRE, R. From spontaneous to strategic natural window ventilation: Improving indoor air quality in Swiss schools. International Journal of Hygiene and Environmental Health, v. 234, 113746, May 2021. DOI: https://doi.org/10.1016/j.ijheh.2021.113746.

VELAVAN; Thirumalaisamy P.; MEYER, Christian G. The COVID-19 epidemic. Tropical Medicine & International Health, v. 25, n. 3, p. 278-280, Feb. 2020. DOI: https://doi.org/10.1111/tmi.13383.

VILCEKOVÁ, Silvia; KAPALO, P.; MEČIAROVÁ, L.; BURDOVÁ, E. K.; IMMRECZEOVÁ, V. Investigation of Indoor Environmental Quality in Classroom – Case Study. Procedia Engineering, v. 190, p. 496 - 503, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.05.369.

VILLANUEVA, Florentina; NOTARIO, A.; CABÃNAS, B.; MARTÍN, P.; SALGADO, S.; GABRIEL, M. F. Assessment of CO2 and aerosol (PM2,5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain. Environmental Research, v. 197, 111092, June 2021. DOI: https://doi.org/10.1016/j.envres.2021.111092.

VOLPP, Kevin G.; KRAUT, B. H.; GHOSH, S.; NEATHERLIN, J. Minimal SARS-CoV-2 Transmission After Implementation of a Comprehensive Mitigation Strategy at a School – New jersey, August 20-November 27, 2020. Morbidity and Mortality Weekly Report, v. 70, n. 11, p. 377-381, Mar. 2021. DOI: http://dx.doi.org/10.15585/mmwr.mm7011a2.

VOURIOT, Carolanne V. M.; BURRIDGE, H. C.; NOAKES, C. J.; LINDEN, P. F. Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide. Indoor Air, v. 31, n. 4, p. 1154-1163, Marc. 2021. DOI: https://doi.org/10.1111/ina.12818.

WHO. WORLD HEALTH ORGANIZATION. Naming the coronavirus disease (COVID-19) and the virus that causes it. Copenhagen: World Health Organization, 2021. Disponível em: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(Covid-2019)-and-the-virus-that-causes-it#:~:text=Official%20names%20have%20been%20announced,%2DCoV%2D2). Acesso em: 20 fev. 2021.

WHO. WORLD HEALTH ORGANIZATION. WHO Coronavirus (COVID-19) Dashboard. 2022. Copenhagen: World Health Organization, 2022. Disponível em: https://Covid19.who.int/. Acesso em: 20 dez, 2022.

XU, Chunwen; LIU, W.; LUO, X.; HUANG, X.; NIELSEN, P. V. Prediction and control of aerosol transmission of SARS-CoV-2 in ventilated context: from source to receptor. Sustainable Cities and Society, v. 76, 103416, Jan. 2021a DOI: https://doi.org/10.1016/j.scs.2021.103416.

XU, Yifang; CAI, J.; LI, S.; HE, Q.; ZHU, S. Airborne infection risks of SARS-CoV-2 in U.S. schools and impacts of different intervention strategies. Sustainable Cities and Society, v. 74, 103188, Nov. 2021b. DOI: https://doi.org/10.1016/j.scs.2021.103188.

ZEMITIS, Jurgis; BOGDANOVICS, Raimonds; BOGDANOVICA, Snezana. The Study of CO2 Concentration in a classroom during the Covid-19 safety measures. E3S Web of Conferences, v. 246, 01004, 2021. DOI: https://doi.org/10.1051/e3sconf/202124601004.

ZIVELONGHI, Alessandro; LAI, Massimo. Mitigating aerosol infection risk in school buildings: the role of natural ventilation, volume, occupancy and CO2 monitoring. Building and Environment, v. 204, 108139, Oct. 2021. DOI: https://doi.org/10.1016/j.buildenv.2021.108139.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 PARC Pesquisa em Arquitetura e Construção

Downloads

Não há dados estatísticos.