Resumo
A consideração da qualidade ambiental nos edifícios tornou-se proeminente no movimento modernista, no Reino Unido e no cenário internacional, após a Segunda Guerra Mundial, incluindo a ênfase ao acesso à luz natural, particularmente em edifícios educacionais. O edifício Marylebone da Universidade de Westminster (da década de 1970), no centro de Londres, é um exemplo dessa tendência arquitetônica. Com claraboias, tetos inclinados, espaços de pé-direito duplo e outros recursos, este é um exemplo modernista tardio de projeto otimizado de iluminação natural em edifícios educacionais no Reino Unido. No entanto, a abordagem simétrica norte-sul das claraboias e da distribuição dos espaços internos levantam questões sobre a eficiência da luz natural. Assim, o objetivo deste estudo técnico foi avaliar o desempenho da luz natural no edifício Marylebone, considerando seus layouts originais e atuais, com o uso de Climate-Based Daylight Modeling (CBDM). Os critérios de desempenho incluíram Iluminância Útil da Luz do Dia (UDI), Fator da Luz do Dia (FLD), níveis de Iluminância e Probabilidade de Brilho (ofuscamento). Dentre os principais resultados, constatou-se o alcance do mínimo de 300 lux pela maior parte do ano (equivalente a 2% de FLD). Riscos de ofuscamento foram identificados próximo às janelas e sob as claraboias do lado sul. Concluiu-se que as estratégias de aproveitamento da luz natural do projeto eram adequadas às atividades do ateliê de 1970, mas não integralmente apropriadas ao uso de computadores que substituíram as pranchetas na década de 1990, por conta do excesso de luminosidade e penetração da radiação solar direta, levando à inserção recente de persianas internas
Referências
ABBOTT, J. A Guide to Modernism in Metro-land. London: Unbound, 2020. 144 p.
ALEEM, B.; MUNIR, A.; VAN, C. Case study evaluation of the Marylebone Campus: Technical Report for Evaluation of Built Environments Module (7AEVD002W), University of Westminster 2016-17. London: University of Westminster, 2017. (Architecture and Environmental Design, Master Course. School of Architecture and Cities. Restricted access).
AL-OBAIDI, K. M.; ISMAIL, M. B.; ABDUL RAHMAN, A. M. A study of the impact of environmental loads that penetrate a passive skylight roofing system in Malaysian buildings. Frontiers of Architectural Research, v. 3, n. 2, p. 178-191, June 2014. DOI: https://doi.org/10.1016/j.foar.2014.03.004.
AL-SALLAL, K. A.; ABOUELHAMD, A. R.; DALMOUK, M. B. Daylighting performance in UAE traditional buildings used as museums. International Journal of Low-Carbon Technologies, v. 13, n. 2, p. 116–12118, June 2018. DOI: https://doi.org/10.1093/ijlct/cty003.
ANDERSEN, M. Unweaving the human response in daylighting design. Building and Environment, v. 91, p. 101-117, Sept. 2015. DOI: https://doi.org/10.1016/j.buildenv.2015.03.014.
ANDERSEN, M.; GOCHENOUR, S. J.; LOCKLEY, S. Modelling ‘non-visual’ effects of daylighting in a residential environment. Building and Environment, v. 70, p. 138-149, Dec. 2013. DOI: https://doi.org/10.1016/j.buildenv.2013.08.018.
BAKER, N.; STEEMERS, K. Daylight Design of Buildings: A Handbook for Architects and Engineers. London: James & James, 2002. 250 p.
BONE, K. Lessons from Modernism: Environmental Design Strategies in Architecture 1925-1970. New York: The Monacelli, 2014. 224 p.
BREEAM. BREEAM New Construction. 2011. Disponível em: https://breeam.com/standards/new-construction. Acesso em: 20 jun. 2019.
BREEAM. Health and Wellbeing: Hea 01 Visual Comfort. 2018. Disponível em: https://kb.breeam.com/section/new-construction/uk/2011/02-health-and-wellbeing/hea-01-visual-comfort/. Acesso em: 08 jan. 2021.
GONÇALVES, J. C. S.; MÜLFARTH, R. C. K.; MICHALSKI, R. L. X. N.; SHIMOMURA, A. R. P.; ROMÉRO, M. A.; FURUYAMA, C. M. S.; PINHO, J. K. C.; LIMA, E. G.; CARUNCHIO, C. F.; SEGOCIA, S. T.; SANTOS, K. D. As condições ambientais do edifício Vilanova Artigas, sede da FAUUSP em São Paulo: estudos analíticos. PARC: Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, p. e022001, jan. 2022. DOI: http://dx.doi.org/10.20396/parc.v13i00.8661881.
HOSSAIN, M., WENG, Z.; SCHIANO-PHAN, R.; SCOTT, D.; LAU, B. Application of IoT and BEMS to Visualise the Environmental Performance of an Educational Building. Energies, v. 13, n. 5, p. 4009, Aug. 2020. DOI: https://doi.org/10.3390/en13154009.
IES. ILLUMINATING ENGINEERING SOCIETY. Glare. 2023. Disponível em: https://www.ies.org/definitions/glare/ Acesso em: 10 ago. 2024.
JAKUBIEC, J.; REINHART, C. DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and Energyplus. In: CONFERENCE OF INTERNATIONAL BUILDING PERFORMANCE SIMULATION, 12., 2011, Sydney. Proceedings […]. Sydney: IBPSA, 2011. Disponível em: https://publications.ibpsa.org/proceedings/bs/2011/papers/bs2011_1701.pdf. Acesso em: 20 mar. 20224.
KONIS, K. S. A novel circadian daylight metric for building design and evaluation. Building and Environment, v. 113, p. 22-38., Feb. 2017. DOI: https://doi.org/10.1016/j.buildenv.2016.11.025.
LARSEN, K. Daylight availability in classrooms: A simulation study. 2004. Tese (Doutorado) - Department of Building Technology and Structural Engineering, Aalborg University, Aalborg. 2004.
LAU, B. 338: The Poetics of Sacred Light – A Comparative Study of the Luminous Environment in Ronchamp Chapel and the Church in the Monastery of La Tourette. In: CONFERENCE ON PASSIVE AND LOW ENERGY ARCHITECTURE, 25., 2008, Dublin. Proceedings […]. Dublin: PLEA, 2008.
LECARO, M.; LAU, B.; RODRIGUES, L.; JARMAN, D. The application of vernacular Australian environmental design principles in Glenn Murcutt’s architecture. Future Cities and Environment, v. 3, n. 3, Apr. 2017. DOI: https://doi.org/10.1186/s40984-017-0026-6.
LEWIS, A. The mathematisation of daylighting: a history of British architects' use of the daylight factor. The Journal of Architecture, v. 22, n. 7, p. 1155-1177, Sept. 2017. DOI: https://doi.org/10.1080/13602365.2017.1376342.
LIMA, K. M.; BRUGNERA, R. R.; CARAM, R.M. O potencial de brises dinâmicos em escritórios quanto ao uso de energia em climas tropicais. In: ENCONTRO NACIONAL, 13.; IX ENCONTRO LATINO-AMERICANO DE CONFORTO NO AMBIENTE CONSTRUÍDO, 9., 2015, Campinas. Anais [...]. Campinas: ENCAC, 2015.
MARCONDES CAVALERI, M. P., CUNHA, G.R.M., GONÇALVES, J.C.S. Iluminação natural em edifícios de escritórios: avaliação dinâmica de desempenho para São Paulo. PARC: Pesquisa em Arquitetura e Construção, Campinas, SP, v. 9, n. 1, p. 19-34, mar. 2018. DOI: https://doi.org/10.20396/parc.v9i1.8650725.
MARDALJEVIC, J.; ANDERSEN, M.; ROY, N.; CHRISTOFFERSEN, J. Daylighting metrics: is there a relation between useful daylight illuminance and daylight glare probability? In: BUILDING SIMULATION AND OPTIMIZATION CONFERENCE, 2012, Loughborough. Proceedings […]. Loughborough: IBPSA, 2012. Disponível em: https://publications.ibpsa.org/conference/paper/?id=bso2012_3B1. Acesso em: 10 jun. 2024.
MARZOUK, M.; ELSHARKAWY, M.; MAHMOUD, A. Optimizing daylight utilization of flat skylights in heritage buildings, Journal of Advanced Research, v. 37, p. 133-145, Mar. 2022. DOI: https://doi.org/10.1016/j.jare.2021.06.005.
METEONORM versão 8. Meteotest. Climate data. Berna: Meteotest, 2021. Disponível em: https://meteonorm.com/en/meteonorm-version-8. Acesso em: 11 jan. 2021.
MOON, P.; SPENCER, D. E. Illumination from a non-uniform sky. Illuminating Engineer, v. 37, p. 707-726, Jan. 1942.
MOORE, F. Concepts and Practices of Architectural Daylighting. New York: Van Nostrand Reinhold, 1991. 290 p.
NABIL, A.; MARDALJEVIC, J. Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Lighting Research & Technology, v. 37, n. 1, p. 41-59, Mar. 2005. DOI:
https://doi.org/10.1191/1365782805li128o.
NABIL, A.; MARDALJEVIC, J. Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings, v. 38, n. 7, p. 905-913, July 2006. DOI: https://doi.org/10.1016/j.enbuild.2006.03.013.
PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Update World Map of Koppen-Geiger climate Classification. Hydrology and Earth System Sciences, v. 11, p. 1633-1644, 2007. DOI: https://doi.org/10.5194/hess-11-1633-2007.
PHILLIPS, D. Daylighting: natural light in architecture. Oxford: Architectural, 2004. 212 p.
PIERSON, C.; WIENOLD, J; BODART, M. Review of Factors Influencing Discomfort Glare Perception from Daylight. LEUKOS, v. 14, n. 3, p. 111-148, Feb. 2018. DOI: https://doi.org/10.1080/15502724.2018.1428617.
RADIANCE: a validated lighting simulation tool. 2019. Disponível em: https://www.radiance-online.org/. Acesso em: 20 jun. 2024.
REINHART, C. F.; MARDALJEVIC, J.; ROGERS, Z. Dynamic Daylight Performance Metrics for Sustainable Building Design. Leukos, v. 3, n. 1, p. 7-31, Sept. 2006. DOI: https://doi.org/10.1582/LEUKOS.2006.03.01.001.
REINHART, C.; HERKEL, S. The Simulation of annual daylight illuminance distributions – a state-of-the-art comparison of six RADIANCE-based methods. Energy and Buildings, v. 32, n. 2, p. 167-187, July 2000. DOI: https://doi.org/10.1016/S0378-7788(00)00042-6.
RHINOCEROS: design, model, present, analyse, realize. 5.0. Seattle: Robert McNeel, 2015. Disponível em: https://www.rhino3d.com/5/. Acesso em: 20 jan. 2024.
RIBA. ROYAL INSTITUTE OF BRISTISH ARCHITECTS. Modernism in Architecture. 2019. Disponível em: https://www.architecture.com/explore-architecture/modernism. Acesso em: 15 jun. 2019.
RUSSO, F. Climatic Responsive Design in Brazilian Modern Architecture. Dissertação (Mestrado) - Martin Centre for Architectural e Urban Studies, Cambridge University, Cambridge, 2004.
SANCHEZ JAIME, A. C.; LAU, B. Light in Seinäjoki Library, Rovaniemi Library and Mount Angel Library designed by Alvar Aalto- Critical Review. In: CONFERENCE ON SUSTAINABLE ARCHITECTURE + URBAN DESIGN, 28., 2012, Lima. Proceedings […]. Lima: PLEA, 2012.
SCHIANO-PHAN, R.; LAU, B.; POUREL, D.; KHAN, S. ‘Spatial Delight and Environmental Performance of Modernist Architecture in London – Golden Lane Estate’. Future Cities and Environment, v. 4, n. 1, p. 16, Sept. 2018. DOI: https://doi.org/10.5334/fce.47.
SOLEMMA. ClimateStudio: advanced daylihting, and thermal analisis. 2018. Disponível em: https://www.solemma.com/climatestudio. Acesso em: 20 jan. 2024.
SOLEMMA. Diva for Rhino 4.0. 2016. Disponível em: https://www.solemma.com/diva. Acesso em: 30 jan. 2024.
TAGLIABUE, L. C.; BUZZETTI, M.; AROSIO, B. Energy saving through the sun: analysis of visual comfort and energy consumption in office space. Energy Procedia, v. 30, p. 693-703, 2012. DOI: https://doi.org/10.1016/j.egypro.2012.11.079.
TREGENZA, P.; WILSON, M. P. Daylighting: Architecture and Lighting Design. London: Routledge, 2013. 290 p.
UCL. UNIVERSITY COLLEGE LONDON. Survey of London: University of Westminster, Marylebone Road Campus, 2017. Disponível em: https://blogs.ucl.ac.uk/survey-of-london/2017/09/01/university-of-westminster-marylebone-road-campus/. Acesso em: 15 out. 2019.
WANG, Q.; XU, H.; ZHANG, F.; WANG, Z. Influence of color temperature on comfort and preference for LED indoor lighting. Optik, v. 129, p. 21-29, Jan. 2017. DOI: https://doi.org/10.1016/j.ijleo.2016.10.049.
WIENOLD, J.; CHRISTOFFERSEN, J. Towards a new daylight glare rating. In: EUROPEAN LIGHING CONFERENCE – LUX EUROPA, 10., Berlin, 2005. Proceedings [...]. Berlin: Ludwig Erhard Haus Industrie – und Handelskarmmer zu Berli, 2005. p. 157-161.
WIENOLD, J.; REETZ, C.; KUHN, T. E.; CHRISTOFFERSEN, J. Evalglare: a new RADIANCE-based tool to evaluate glare in office spaces. In: INTERNATIONAL RADIANCE WORKSHOP, 3., 2004, Fribourg. Proceedings […]. Fribourg: Ecole D’Ingénieurs et d’ Architectes, 2004. Disponível em: https://www.radiance-online.org/community/workshops/2004-fribourg/presentations/Wienold_extabs.pdf. Acesso em: 20 jan. 2024.
ZHOU, Z., LAU, B. The Poetics of Light in the Extension of the Canova Sculpture Gallery by Carlo Scarpa. In: INTERNATIONAL CONFERENCE DESIGN TO THRIVE. 33., 2017, Edinburgh. Proceedings […]. Edinburgh: PLEA, 2017. v. 2, p. 3474.

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 PARC: Pesquisa em Arquitetura e Construção