Banner Portal
Phase change materials: energetic analysis for Brazilian territory
PDF (Português (Brasil))

Keywords

Energy efficiency. Thermal comfort. PCM. Phase change materials

How to Cite

PONS, Vinicius; STANESCU, George. Phase change materials: energetic analysis for Brazilian territory. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 8, n. 2, p. 127–140, 2017. DOI: 10.20396/parc.v8i2.8650228. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8650228. Acesso em: 17 jul. 2024.

Abstract

The potential of reducing electrical energy consumption to maintain thermal comfort in an office with an area of 40 m² was evaluated for the eight bioclimatic zones defined according to the Brazilian norm NBR 15.220-2005. A layer of phase change material (PCM) of natural organic origin was employed on the outer wall. Three strategies for the thermal comfort maintenance were considered: (1) heat pump running according to an inverted Carnot cycle with constant coefficient of performance; (2) strategy 1 heat pump but always prioritizing the ventilation with external air when outside temperature is beneficial to indoor thermal control; (3) ventilation as in strategy 2 and maximum optimization of the heat pump used to maintain the temperature in the defined range. The temperature range 18°C-24°C was defined as thermal comfort and PCM was a mixture of capric acid and dodecyl alcohol with melting temperature of 26.5°C. In strategy 1, PCM reduced 4.28% electrical energy consumption for Santa Maria, state of Rio Grande do Sul, while with strategy 2, the reduction was 13.33%. For Curitiba, strategy 2 reduced 9.47%. The results for strategy 3 for the same city shows that the use of PCM reduces 20.18% of electrical energy consumption. Simulation using the third strategy made possible a reduction around 90% of electrical energy. It was observed in all the cases studied that the solar exergy has the potential of generating enough energy to maintain the internal temperature in the range of comfort. It is clear the need for technological advancement so that this transformation of exergy into electrical energy happens without so much energy loss. This work has qualified these data in a way to better understand their representativeness.

https://doi.org/10.20396/parc.v8i2.8650228
PDF (Português (Brasil))

References

ABHAT, A. Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy, v. 30, n. 4, p. 313–332, 1983. ISSN: 0038-092X. https://doi.org/10.1016/0038-092X(83)90186-X

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15.220: Desempenho térmico de edificações. Rio de Janeiro, 2005.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15.575: Edificações habitacionais - Desempenho. Rio de Janeiro, 2013.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16.401: Instalações de ar-condicionado - Sistemas centrais e unitários. Rio de Janeiro, 2008.

ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers. Ashrae Standard 55 - Thermal environmental conditions for human occupancy. Atlanta, 2013.

BODACH, S.; HAMHABER, J. Energy efficiency in social housing: Opportunities and barriers from a case study in Brazil. Energy Policy, v. 38, n. 12, p. 7898–7910, 2010. ISSN: 0301-4215. https://doi.org/10.1016/j.enpol.2010.09.009.

BRASIL. Ministério das Minas e Energia. Balanço Energético Nacional: ano base 2016 - Final. Brasília, 2016.

CABEZA, L. F. et al. Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings, v. 39, n. 2, p. 113–119, fev. 2007. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2006.03.030.

DE GRACIA, A. et al. A simple model to predict the thermal performance of a ventilated facade with phase change materials. Energy and Buildings, v. 93, p. 137–142, 2015. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2015.01.069.

ELETROBRAS. Pesquisa de posse de equipamentos e hábitos de uso, ano base 2005: classe Residencial Relatório Brasil - Sumário Executivo. Rio de Janeiro: ELETROBRAS; PROCEL, 2009. 187 p. (Avaliação do Mercado de Eficiencia Energética no Brasil).

FIORITO, F. Phase-change Materials for Indoor Comfort Improvement in Lightweight Buildings. A Parametric Analysis for Australian Climates. Energy Procedia, v. 57, n. 0, p. 2014–2022, 2014. ISSN: 1876-6102. https://doi.org/10.1016/j.egypro.2014.10.066.

HALFORD, C. K.; BOEHM, R. F. Modeling of phase change material peak load shifting. Energy and Buildings, v. 39, p. 298–305, 2007. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2006.07.005.

HUANG, M. J.; EAMES, P. C.; NORTON, B. Thermal regulation of building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer, v. 47, n. 12–13, p. 2715–2733, 2004. ISSN: 0017-9310. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015.

IZQUIERDO-BARRIENTOS, M. A. et al. A numerical study of external building walls containing phase change materials (PCM). Applied Thermal Engineering, v. 47, p. 73–85, dez. 2012. ISSN: 1359-4311. https://doi.org/10.1016/j.applthermaleng.2012.02.038.

JEONG, S. G. et al. Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Solar Energy Materials and Solar Cells, v. 117, p. 87–92, 2013. ISSN: 0927-0248. https://doi.org/10.1016/j.solmat.2013.05.038

KALNÆS, S. E.; JELLE, B. P. Phase Change Materials for Building Applications: A State-of-the-Art Review and Future Research Opportunities. Energy and Buildings, v. 94, n. 7491, p. 150–176, 2015. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2015.02.023.

KONG, X. et al. Experimental research on the use of phase change materials in perforated brick rooms for cooling storage. Energy and Buildings, v. 62, p. 597–604, 2013. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2013.03.048.

KOSNY, J. et al. Dynamic thermal performance analysis of fiber insulations containing bio-based phase change materials (PCMs). Energy and Buildings, v. 52, p. 122–131, 2012. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2012.05.021.

LEE, K. O. et al. Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management. Applied Energy, v. 137, p. 699–706, 2015. ISSN: 0306-2619. https://doi.org/10.1016/j.apenergy.2014.09.003.

MANDILARAS, I. et al. Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls. Building and Environment, v. 61, p. 93–103, 2013. ISSN: 0360-1323. https://doi.org/10.1016/j.buildenv.2012.12.007.

PEREIRA, C. D.; LAMBERTS, R.; GHISI, E. Nota técnica referente aos níveis mínimos de eficiência energética de condicionadores de ar no Brasil. 2013.

PONS, Vinícius. Estudo do potencial dos materiais com mudança de fase para redução do consumo de energia na manutenção do conforto térmico no ambiente construído. 2017. 113f. Dissertação (Mestrado em Engenharia de Construção Civil) – Programa de Pós-graduação em Engenharia da Construção Civil, Universidade Federal do Paraná, Curitiba, 2017.

ROBSON, C. Real World Research: a resource for social scientists and practioner-researchers. 2.ed. Oxford: Blackwell, 2002.

RORIZ, M. Arquivos climáticos de municípios brasileiros. ANTAC - Associação Nacional de Tecnologia no Ambiente Construído. São Carlos - SP. Janeiro de 2012a.

SAJJADIAN, S. M.; LEWIS, J.; SHARPLES, S. The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates. Energy and Buildings, v. 93, p. 83–89, 2015. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2015.02.029.

SILVA, T. et al. Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution. Energy and Buildings, v. 49, p. 235–245, 2012. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2012.02.010.

SOARES, N. et al. Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates. Energy and Buildings, v. 70, p. 411–421, 2014. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2013.11.072.

STANESCU, G.; SCHMID, A. L. Thermodynamic Approach On The Condensation Risk In Built Environment. HEFAT2014, n. Julho, 2014. Disponível em: http://hdl.handle.net/2263/44753. Acesso em: 15 dez. 2017.

U.S. DEPARTMENT OF ENERGY. EnergyPlus. Energy Simulation Software, 2016. Disponível em: http://apps1.eere.energy.gov/buildings/energyplus/

WANG, Q.; ZHAO, C. Y. Parametric investigations of using a PCM curtain for energy efficient buildings. Energy and Buildings, v. 94, p. 33–42, 2015. ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2015.02.024.

I accept that PARC Research in Architecture and Building Construction journal perform, on the original file approved for publication, revisions and modifications in orthoghaphic, grammar and standard issues.

I give to PARC Research in Architecture and Building Construction journal the rights of first publication of the revised version of my paper, licensed under the 'Creative Commons Attribution' license (which allows sharing the work with the recognition of first authorship and publication in this journal).

Downloads

Download data is not yet available.