Banner Portal
Influence of the envelope on thermal and energy performance of institutional buildings in semi-arid
PDF (Português (Brasil))

Keywords

Bioclimatic architecture. Energy efficiency. Computer simulation.

How to Cite

OLIVEIRA, Paolo Américo de; LUNARDI, Diana Gonçalves. Influence of the envelope on thermal and energy performance of institutional buildings in semi-arid. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 9, n. 4, p. 276–289, 2018. DOI: 10.20396/parc.v9i4.8651048. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8651048. Acesso em: 16 aug. 2024.

Abstract

Energy efficiency in buildings is related to the bioclimatic architecture, which is the adequacy of the building to the local climate. This study aimed to analyze the influence of certain architectural and construction characteristics on the electricity consumption in buildings located at Mossoró, RN, whose climate is tropical semi-arid. We recorded data of thermal and geometric characteristics of the architectural elements, such as: building shape, layout and use of spaces, cardinal orientation of facades, positioning of translucent elements and thermal properties of construction systems materials. For the thermal and energy performance analysis of parameters such as thermal transmittance and absorptance of external walls and roofs, window-to-wall ratio, vertical shading angles of translucent openings and buildings cardinal orientation, the EnergyPlus program was used to simulate electricity consumption throughout the year, based on models similar to the target buildings of this study. In these buildings, due to the architectural variables tested, artificial air conditioning was the main factor responsible for the variation of annual electricity consumption, while the consumption of artificial lighting and equipment remained constant in all simulated scenarios. In addition, the bright and reflective buildings coatings, the low window-to-wall ratio and the existence of shading elements contributed to minimizing the effects of solar radiation on the buildings heating. For this diagnosis, project recommendations are proposed for a thermally efficient building’s envelope, inserted in the semi-arid tropical climate and requiring artificial air conditioning.
https://doi.org/10.20396/parc.v9i4.8651048
PDF (Português (Brasil))

References

AHMAD, Q.; SZOKOLAY, S. Validation of thermal design tools. International Energy Journal, v. 16, n. 2, 2017.

AL ANZI, A.; SEO, D.; KRARTI, M. Impact of building shape on thermal performance of office buildings in Kuwait. Energy Conversion and Management, v. 50, p. 822-828, 2009. DOI:https://doi.org/10.1016/j.enconman.2008.09.033.

ALVARES, C. A. et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. DOI: https://doi.org/10.1127/0941-2948/2013/0507.

ARENT, D. et al. Implications of high renewable electricity penetration in the US for water use, greenhouse gas emissions, land-use, and materials supply. Applied Energy, v. 123, p. 368-377, 2014. DOI:https://doi.org/10.1016/j.apenergy.2013.12.022.

ABNT ̶ ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220-2: Desempenho térmico de edificações. Parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator de calor solar de elementos e componentes de edificações. Rio de Janeiro: ABNT, 2005.

BALSLEV, Y. J.; POTCHTER, O.; MATZARAKIS, A. Climatic and thermal comfort analysis of the Tel-Aviv Geddes Plan: A historical perspective. Building and Environment, v. 93, p. 302-318, 2015. DOI:https://doi.org/10.1016/j.buildenv.2015.07.005.

CARLO, J. C.; LAMBERTS, R. Development of envelope efficiency labels for commercial buildings: Effect of different variables on electricity consumption. Energy and Buildings, n. 40, p. 2002-2008, 2008. DOI:https://doi.org/10.1016/j.enbuild.2008.05.002.

CARLO, J. C.; LAMBERTS, R. Parâmetros e métodos adotados no regulamento de etiquetagem da eficiência energética de edifícios – parte 1: método prescritivo. Ambiente Construído, v. 10, n. 2, p. 7-26, abr./jun. 2010a. DOI:http://doi.org/10.1590/S1678-86212010000200001.

CARLO, J. C.; LAMBERTS, R. Parâmetros e métodos adotados no regulamento de etiquetagem da eficiência energética de edifícios – parte 2: método de simulação. Ambiente Construído, v. 10, n. 2, p. 27-40, abr./jun. 2010b. DOI:http://doi.org/10.1590/S1678-86212010000200002.

CORGNATI, S. P.; KINDINIS, A. Thermal mass activation by hollow core slab coupled with night ventilation to reduce summer cooling loads. Building and Environment, v. 42, n. 9, p. 3285-3297, 2007. DOI:https://doi.org/10.1016/j.buildenv.2006.08.018.

DOE ̶ U.S. DEPARTMENT OF ENERGY. EnergyPlus. Version 8.2.0. [S.l.]:, 2015. Disponível em: https://energyplus.net. Acesso em: 24 maio 2015.

FUMO, N.; MAGO, P.; LUCK, R. Methodology to estimate building energy consumption using EnergyPlus benchmark models. Energy and Buildings, v. 42, p. 2331-2337, 2010. DOI:https://doi.org/10.1016/j.enbuild.2010.07.027.

GRÜNBERG, P. R. M.; MEDEIROS, M. H. F. de; TAVARES, S. F. Environmental certification for habitations: comparison between LEED for Homes, Aqua process and "Selo Casa Azul". Ambiente & Sociedade, v. 17, n. 2, p. 209-226, 2014. DOI:http://doi.org/10.1590/S1414-753X2014000200013.

INMETRO ̶ INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Portaria n.º 372, de 17 de setembro de 2010. Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edifícios Comerciais, de Serviço e Públicos. Rio de Janeiro: Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, 2010.

INMETRO ̶ INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. Portaria n.º 50, de 01 de fevereiro de 2013. Requisitos da Avaliação da Conformidade para Eficiência Energética de Edificações. Rio de Janeiro: Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, 2013.

JI, L. et al. Greenhouse gas emission factors of purchased electricity from interconnected grids. Applied Energy, v. 184, p. 751-758, 2016. DOI:https://doi.org/10.1016/j.apenergy.2015.10.065.

KATS, G. Tornando nosso ambiente construído mais sustentável. Custos, benefícios e estratégias. São Paulo: Island Press, 2014. ISBN 978-1-59726-668-0.

LAMBERTS, R.; DUTRA, L.; PEREIRA, F. O. R. Eficiência energética na arquitetura. 3ª Ed. São Paulo: Eletrobrás/Procel, 2014.

MARTINEZ, M. F. et al. Redução de consumo de energia elétrica através de conceitos green building. Eletrônica de Potência, v. 14, n. 2, p. 141-148, maio 2009. DOI: http://doi.org/10.18618/REP.2009.2.141148.

MASCARÓ, J. L. O Custo das decisões arquitetônicas. 3ª ed. Porto Alegre: JLM, 2004.

NEVES, Letícia de Oliveira; MACHADO, Rodrigo Dias; CAVALCANTE, Rodrigo. Desempenho térmico do edifício da FAU Maranhão em dois momentos históricos. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 7, n. 4, p. 211-224, dez. 2016. ISSN 1980-6809. DOI:https://doi.org/10.20396/parc.v7i4.8646323.

OLIVEIRA, E. A. S. de et al. Human thermal comfort and architectural volume. Acta Scientiarum - Tecnology, v. 38, n. 2, p. 129-135, 2016. DOI:https://doi.org/10.4025/actascitechnol.v38i2.28308.

PEDRINI, A.; WESTPHAL, F. S.; LAMBERTS, R. A methodology for building energy modelling and calibration in warm climates. Building and Environment, v. 37, n. 8, p. 903-912, 2002. DOI:https://doi.org/10.1016/S0360-1323(02)00051-3.

PÉREZ-LOMBARD, L. et al. A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes. Energy and Buildings, v. 41, p. 272-278, 2009. DOI:https://doi.org/10.1016/j.enbuild.2008.10.004.

REY, F. J.; VELASCO, E.; VARELA, F. Building Energy Analysis (BEA): A methodology to assess building energy labelling. Energy and Buildings, n. 39, p. 709-716, 2007. DOI:https://doi.org/10.1016/j.enbuild.2006.07.009.

RORIZ, M. Laboratório de eficiência energética em edificações. Arquivos climáticos em formato EPW. Florianópolis: Laboratório de Eficiência Energética em Edificações. 2012. Disponível em: http://www.labeee.ufsc.br/downloads/arquivos-climaticos/formato-epw . Acesso em: 29 jun. 2015.

STANKEVICIUS, V.; KARBAUSKAITE, J.; MONSTVILAS, E. The development of reference values for energy certification of buildings in Lithuania. Energy and Buildings, n. 39, p. 284-288, 2007. DOI:https://doi.org/10.1016/j.enbuild.2006.05.008.

SZOKOLAY, S. V. Introduction to architectural science: the basis of sustainable design. 2ª ed. Routledge, 2008. ISBN 1317918592.

I accept that PARC Research in Architecture and Building Construction journal perform, on the original file approved for publication, revisions and modifications in orthoghaphic, grammar and standard issues.

I give to PARC Research in Architecture and Building Construction journal the rights of first publication of the revised version of my paper, licensed under the 'Creative Commons Attribution' license (which allows sharing the work with the recognition of first authorship and publication in this journal).

Downloads

Download data is not yet available.