Banner Portal
Rainwater retention by green roof with precast cementitious with EVA
PDF (Português (Brasil))

Keywords

Green roof
Rainwater
Precast
EVA waste
Lightweight aggregates

How to Cite

MENDONÇA, Tatyane Martins; MELO, Aluísio Braz. Rainwater retention by green roof with precast cementitious with EVA. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 11, p. e020007, 2020. DOI: 10.20396/parc.v11i0.8651659. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8651659. Acesso em: 30 jun. 2024.

Abstract

Flooding problems in urban streets, resulting from the combination of occurrence of heavy rains and excess sealing of urban spaces, have caused severe losses to Brazilian cities. The green roof with your rainwater retention capacity is an interesting alternative to reduce the discharges on urban drainage systems. In this article, we will analyze the rainwater retention potential, from an extensive modular green roof, proposed with precast cementitious with lightweight aggregates of Ethylene Vinyl Acetate (EVA), originated from footwear industry waste. For this, were compared results from monitoring the volumes of rainfall over the proposed green roof and conventional roofing, all installed on prototypes. Additionally, a simulation was performed to estimate the rainwater retention capacity in a hypothetical scenario, in which a small portion of the city's buildings covers were installed green roof proposed. The additional contribution to rainwater retention due to the presence of lightweight aggregates on the modules was confirmed. It has also been demonstrated that the rainwater retention capacity by green roof proposed may vary between 73.3% and 90.5%, as the soil is wet or dry, respectively. The retention volumes estimated in the city's simulation can be up to 4 million liters/day in dry conditions on the green roof. Indicating that this type of coverage is encouraged in buildings; there is the potential to mitigate flooding problems on city roads.

https://doi.org/10.20396/parc.v11i0.8651659
PDF (Português (Brasil))

References

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12118: Blocos vazados de concreto simples para alvenaria — Métodos de ensaio. Rio de Janeiro, 2014. Disponível em: http://www.abntcatalogo.com.br/norma.aspx?ID=314197;

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15527: Água de chuva - Aproveitamento de coberturas em áreas urbanas para fins não potáveis – Requisitos - Rio de Janeiro, 2007. Disponível em: http://www.abntcatalogo.com.br/norma.aspx?ID=325;

BERARDI, Umberto; GHAFFARIANHOSEINI, Amir Hosein; GHAFFARIANHOSEINI, Ali. State-of-the-art analysis of the environmental benefits of green roofs. Applied Energy, v.115, p.411–428, feb. 2014. DOI:http://dx.doi.org/10.1016/j.apenergy.2013.10.047;

CASTLETON, H.F.; STOVIN, V.; BECK, S.B.M.; DAVISON, J.B. Green roofs; Building energy savings and the potential for retrofit. Energy and Buildings, v.42, Issue 10, p.1582-1591, oct. 2010. DOI:https://doi.org/10.1016/j.enbuild.2010.05.004;

DEL BARRIO, E. P. Analysis of the green roofs cooling potential in buildings. Energy and Buildings, v.27, Issue 2, p.179-193, apr. 1998. DOI:https://doi.org/10.1016/S0378-7788(97)00029-7;

DENARDO, J.C., JARRETT, A.R., MANBECK, H.B., BEATTIE, D.J., BERGHAGE, R.D. Stormwater mitigation and surface temperature reduction by green roofs. Transactions of the American Society of Agricultural and Biological Engineers, v. 48, n. 4, p. 1491-1496, 2005. DOI:https://doi.org/10.13031/2013.19181.

DINIZ, Júlio Mannuel Tavares. Variabilidade da precipitação e do número de dias com chuvas de duas cidades distintas da Paraíba. HOLOS. v.3, p. 171-180, jun. 2013. DOI: https://doi.org/10.15628/holos.2013.1291

DUNNETT, N.; NAGASE, A.; HALLAM, A. The dynamics of planted and colonising species on a green roof over six growing seasons 2001-2006: Influence of substrate depth. Urban Ecosystems, v. 11, n. 4, p. 373-384, dec.2008. DOI:https://doi.org/10.1007/s11252-007-0042-7

FERREIRA, C. A.; MORUZZI, R. B. Considerações sobre a aplicação do telhado verde para captação de água de chuva em sistemas de aproveitamento para fins não potáveis. In: ENCONTRO NACIONAL, 4; ENCONTRO LATINO-AMERICANO SOBRE EDIFICAÇÕES E COMUNIDADES SUSTENTÁVEIS, 2., 2007, Campo Grande. Anais [...]. Campo Grande: ELECS, 2007, p.1027-1036;

INMET. Instituto Nacional de Meteorologia. BDMEP. Banco de Dados Meteorológicos para Ensino e Pesquisa. Disponível em: http://www.inmet.gov.br/projetos/rede/pesquisa/. Acesso em 18 agosto 2016;

JAFFAL, I.; OULDBOUKHITINE, S.; BELARBI. R. A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, v.43, p. 157–164, jul. 2012. DOI:https://doi.org/10.1016/j.renene.2011.12.004

JOBIM, A. Diferentes tipos de telhados verdes no controle quantitativo da água pluvial. 2013, 75f. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Maria, Santa Maria, 2013.

KÖHLER, M. Long-Term Vegetation Research on Two Extensive Green Roofs in Berlin. Urban Habitats. v.4, n. 1, p. 3-26. dec. 2006.

KÖHLER, M., POLL, P.H. Long-term performance of selected old Berlin greenroofs in comparison to younger extensive greenroofs in Berlin. Ecological Engineering, v.36, n. 5, p. 722-729, 2010. DOI:https://doi.org/10.1016/j.ecoleng.2009.12.019

MENDONÇA, Tatyane Nadja Martins de. Telhado verde extensivo em pré-moldado de concreto EVA (Acetato Etil Vinila). 2015, 210f. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia Civil e Ambiental, Universidade federal da Paraíba, João Pessoa, 2015;

MENDONÇA, Tatyane Nadja Martins; MELO, Aluísio Braz de. Telhado verde modular extensivo: biodiversidade e adaptação das plantas aos Blocos TEVA. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 8, n. 2, p. 117-126, jun. 2017. DOI:http://dx.doi.org/10.20396/parc.v8i2.8649606

MENTENS, J., RAES, D., HERMY, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, v. 77, n. 3, p. 217-226, aug. 2006. DOI:https://doi.org/10.1016/j.landurbplan.2005.02.010

NIU, H.; CLARK, C.; ZHOU J.; ADRIAENS, P. Scaling of economic benefits from green roof implementation in Washington, DC. Environmental Science & Technology, v. 44, n. 11, p. 4302-4308, apr. 2010. DOI:https://doi.org/10.1021/es902456x

OBERNDORFER, E; LUNDHOLM, J; BASS, B; COFFMAN, R.R; DOSHI, H; DUNNETT, N; GAFFIN, S; KÖHLER, M; LIU, K.K.Y; ROWE, B. Green roofs as urban ecosystems: ecological structures, functions, and services. BioScience, v.57, n.10, p. 823–833, nov. 2007. DOI:https://doi.org/10.1641/B571005

OHNUMA, A. A. Medidas não convencionais de reservatório d’água e controle da polução hídrica em lotes domiciliares. 2008. 306f. Tese (Doutorado em Ciências da Engenharia Ambiental) - Escola de Engenharia de São Carlos. São Paulo, 2008;

OULDBOUKHITINE, S. E.; BELARBI, R.; JAFFAL, I.; TRABELSI, A. Assessment of green roof thermal behavior: A coupled heat and mass transfer model. Building and Environment, v.46, n. 12, p. 2624-2631, dec. 2011. DOI:https://doi.org/10.1016/j.buildenv.2011.06.021

RIBEIRO, C. A. M. Atualização e aprofundamento do mapa de análises climáticas do município de João Pessoa – Paraíba. 2013. 157f. Dissertação (Mestrado) – Programa de Pós-Graduação em Arquitetura e Urbanismo. Universidade Federal da Paraíba, João Pessoa, 2013;

TASSI, Rutinéia et al . Telhado verde: uma alternativa sustentável para a gestão das águas pluviais. Ambient. constr., Porto Alegre , v. 14, n. 1, p. 139-154, Mar. 2014 . DOI: https://doi.org/10.1590/S1678-86212014000100012.

THEODOSIOU, T.G. Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy and Buildings, v.35, n. 9, p. 909-917, oct. 2003. DOI:https://doi.org/10.1016/S0378-7788(03)00023-9.

TONIETTO, R.; FANT, J.; ASCHER, J.; ELLIS, K.; LARKIN, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landscape and Urban Planning, v.103, Issue 1, p. 102-108, oct. 2011. DOI:https://doi.org/10.1016/j.landurbplan.2011.07.004

VAN WOERT, N.D.; ROWE, D.B.; ANDRESEN, J.A.; RUGH, C.L.; FERNANDEZ, R.T.; XIAO, L. Green roof storm water retention: Effects of roof surface, slope, and media depth. Journal of Environmental Quality, v.34, n.3, p. 1036-1044, may 2005. DOI:https://doi.org/10.2134/jeq2004.0364;

VECCHIA, F. Cobertura Verde Leve (CVL): Ensaio Experimental. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO (ENCAC), 6; ENCONTRO LATINO-AMERICANO SOBRE CONFORTO NO AMBIENTE CONSTRUÍDO, 4., Maceió. Anais [...]. Maceió: ANTAC, 2005;

WILLIAMS, N.S.G.; RAYNER, J.P.; RAYNOR, K.J. Green roofs for a wide brown land: opportunities and barriers for rooftop greening in Australia. Urban Forest & Urban Green, v.9, Issue 3, p. 245–251, 2010. DOI:https://doi.org/10.1016/j.ufug.2010.01.005.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 PARC Research in Architecture and Building Construction

Downloads

Download data is not yet available.