Banner Portal
Bioclimatic strategies and environmental comfort
PDF (Português (Brasil))

Keywords

Thermal perception
Environmental comfort
Individual office rooms
Bioclimatic strategies

How to Cite

SANTOS, Ana Carolina dos; FARIA, João Roberto Gomes de. Bioclimatic strategies and environmental comfort: integrated analysis of conflicts. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 12, n. 00, p. e021021, 2021. DOI: 10.20396/parc.v12i00.8656664. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8656664. Acesso em: 17 jul. 2024.

Abstract

Environmental comfort is considered one of the main factors of satisfaction and productivity in offices. When it is obtained bioclimatically and the advantages related to energy saving, it results in environmentally dynamic spaces, which is considered a factor of good quality in a place. Users have a fundamental role in managing controls for the establishment of environmental comfort conditions in their rooms. However, inadvertently, the adjustment for a variable, such as acoustic privacy, can compromise the bioclimatic conditions of the space as a whole. The purpose of this present work was to analyze in an integrated way how users' search for better thermal, acoustical or lighting conditions separately can make the use of office rooms designed with strategies of natural thermal conditioning and daylighting, without air conditioning and electric lighting. A case study was carried out in the teaching rooms of four department buildings on a university campus. Such buildings have bioclimatic strategies and their rooms, with the same morphology, are mostly individually occupied. A mixed approach was adopted in the research, with quantitative and qualitative evaluations with data generated by computer thermal simulation and questionnaires. The results highlighted the interference of controlling noise, natural lighting and external view on thermal and lighting conditions, making it impossible or, at least, reducing the use of bioclimatic strategies.

https://doi.org/10.20396/parc.v12i00.8656664
PDF (Português (Brasil))

References

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220-2: Desempenho térmico de edificações – parte 2: método de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2008.

AL HORR, Y. et al. Occupant productivity and office indoor environment quality: a review of the literature. Building and Environment, v. 105, p. 369–389, 15 ago. 2016. DOI: https://doi.org/10.1016/j.buildenv.2016.06.001.

ANJUM, N.; ASHCROFT, R.; PAUL, J. Privacy in the workplace design. The Design Journal, v. 7, n. 1, p. 27–42, mar. 2004. DOI: https://doi.org/10.2752/146069204789355236.

ANSI/ASHRAE – AMERICAN NATIONAL STANDARD INSTITUTE/AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. ANSI/ASHRAE 55: Thermal environmental conditions for human occupancy. Atlanta, 2020. Disponível em: https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards. Acesso em: 1 dez. 2020.

ARIES, M. B. C.; VEITCH, J. A.; NEWSHAM, G. R. Windows, view, and office characteristics predict physical and psychological discomfort. Journal of Environmental Psychology, v. 30, n. 4, p. 533–541, dez. 2010. DOI: https://doi.org/10.1016/j.jenvp.2009.12.004.

BOLARINWA, O. Principles and methods of validity and reliability testing of questionnaires used in social and health science researches. Nigerian Postgraduate Medical Journal, v. 22, n. 4, p. 7, 2015. DOI: https://doi.org/10.4103/1117-1936.173959.

BROWN, A. L. Advancing the concepts of soundscapes and soundscape planning. In: ANNUAL CONFERENCE OF THE AUSTRALIAN ACOUSTICAL SOCIETY, 2011, Gold Coast. Proceedings [...]. Gold Coast, Australia: Australian Acoustical Society, 2011. p. 298–305.

CRAWLEY, D. B. et al. EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings, Special Issue: BUILDING SIMULATION’99. v. 33, n. 4, p. 319–331, 1 abr. 2001. DOI: https://doi.org/10.1016/S0378-7788(00)00114-6.

DE DEAR, R. Revisiting an old hypothesis of human thermal perception: alliesthesia. Building Research & Information, v. 39, n. 2, p. 108–117, abr. 2011. DOI: https://doi.org/10.1080/09613218.2011.552269.

FARIA, J. R. G.; INSKAVA, A. Y.; PLANITZER, S. T. Lighting preferences in individual offices. Ambiente Construído, v. 17, n. 1, p. 39–53, mar. 2017. DOI: https://doi.org/10.1590/s1678-86212017000100122.

GALASIU, A. D.; VEITCH, J. A. Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: a literature review. Energy and Buildings, v. 38, n. 7, p. 728–742, jul. 2006. DOI: https://doi.org/10.1016/j.enbuild.2006.03.001.

GUGLIELMETTI, R.; MACUMBER, D.; LONG, N. OpenStudio: an open source integrated analysis platform. In: BUILDING SIMULATION 2011, Sydney. Proceedings [...]. Sydney: IBPSA, 2011.

HAMMER, Ø. PAST: PAleontological STatistics version 4.06: reference manual. Manual. Oslo: Natural History Museum, University of Oslo, 2021. Disponível em: https://www.nhm.uio.no/english/research/infrastructure/past/downloads/past4manual.pdf. Acesso em: 20 mai. 2011.

HAMMER, Ø.; HARPER, D. A. T.; RYAN, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, v. 4, n. 1, p. 9, 2001.

HESCHONG, L. Thermal delight in architecture. Cambridge, MA: MIT Press, 1979.

IES DAYLIGHT METRICS COMMITTEE. Approved method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). Method, n. LM-83–12. New York: Illuminating Engineering Society of North America, 2012.

ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10551: Ergonomics of the thermal environment: assessment of the influence of the thermal environment using subjective judgement scales. Brussels, 2001.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, v. 33, n. 1, p. 159–174, 1977. DOI: https://doi.org/10.2307/2529310.

LAURENCE, G. A.; FRIED, Y.; SLOWIK, L. H. “My space”: A moderated mediation model of the effect of architectural and experienced privacy and workspace personalization on emotional exhaustion at work. Journal of Environmental Psychology, v. 36, p. 144–152, 1 dez. 2013. DOI: https://doi.org/10.1016/j.jenvp.2013.07.011.

LICHT.DE. Guide to DIN EN 12464-1: lighting of work places - Part 1: indoor work places. 2. ed. Frankfurt: Fördergemeinschaft Gutes Licht, 2012. Disponível em: https://www.licht.de/fileadmin/Publications/More_publications/1303_E_Guide-DIN-EN-12464-1_web.pdf. Acesso em: 23 mar. 2015.

NABIL, A.; MARDALJEVIC, J. Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Lighting Research and Technology, v. 37, n. 1, p. 41–57, 3 jan. 2005. DOI: https://doi.org/10.1191/1365782805li128oa.

NAVAI, M.; VEITCH, J. A. Acoustic satisfaction in open-plan offices: review and recommendations. Research Report, n. RR-151. Ottawa: Institute for Research in Construction, National Research Council Canada, 2003.

NICOL, F.; HUMPHREYS, M. A.; ROAF, S. Adaptive thermal comfort: principles and practice. New York, Abingdon (UK): Routledge, 2012.

O’BRIEN, W.; KAPSIS, K.; ATHIENITIS, A. K. Manually-operated window shade patterns in office buildings: A critical review. Building and Environment, v. 60, p. 319–338, fev. 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.10.003.

ORDENES, M. et al. Metodologia utilizada na elaboração da biblioteca de materiais e componentes construtivos brasileiros para simulações no VisualDOE-3.1. Relatório Técnico. Florianópolis: Universidade Federal de Santa Catarina, 2003. Disponível em: http://www.labeee.ufsc.br/sites/default/files/publicacoes/relatorios_pesquisa/RP_Biblioteca_Materiais_VisualDOE.pdf. Acesso em: 26 fev. 2019.

PARKINSON, T.; DE DEAR, R.; BRAGER, G. Nudging the adaptive thermal comfort model. Energy and Buildings, v. 206, p. 1–13, 1 jan. 2020. DOI: https://doi.org/10.1016/j.enbuild.2019.109559.

PRICE, L. L. A.et al. Linking the non-visual effects of light exposure with occupational health. International Journal of Epidemiology, v. 48, n. 5, p. 1393–1397, 1 out. 2019. DOI: https://doi.org/10.1093/ije/dyz131.

REINHART, C. F. Lightswitch-2002: a model for manual and automated control of electric lighting and blinds. Solar Energy, v. 77, n. 1, p. 15–28, 2004. DOI: https://doi.org/10.1016/j.solener.2004.04.003.

SCHOBER, P.; BOER, C.; SCHWARTE, L. A. Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, v. 126, n. 5, p. 1763–1768, maio 2018. DOI: https://doi.org/10.1213/ANE.0000000000002864.

SEPPANEN, O.; FISK, W. Some quantitative relations between indoor environmental quality and work performance or health. HVAC&R Research, v. 12, n. 4, p. 957–973, 1 out. 2006. DOI: https://doi.org/10.1080/10789669.2006.10391446.

SHISHEGAR, N.; BOUBEKRI, M. Natural light and productivity: analyzing the impacts of daylighting on students’ and workers’ health and alertness. International Journal of Advances in Chemical Engineering and Biological Sciences, v. 3, n. 1, p. 72–77, 21 maio 2016. DOI: https://doi.org/10.15242/IJACEBS.AE0416104.

VEITCH, J. Workplace design contributions to mental health and well-being. Healthcare Papers, v. 11, n. Special Issue, p. 38–46, 2011. DOI: https://doi.org/10.12927/hcpap.2011.22409.

VISCHER, J. C. Designing the work environment for worker health and productivity. In: DESIGN & HEALTH WORLD CONGRESS & EXHIBITION (WCDH), 2003, Montreal. Proceedings [...]. Montreal, Canada: International Academy for Design and Health, 2003. p. 85–93.

VISCHER, J. C. Towards an environmental psychology of workspace: how people are affected by environments for work. Architectural Science Review, v. 51, n. 2, p. 97–108, 2008. DOI: https://doi.org/10.3763/asre.2008.5114.

WEBER, F. da S. et al. Desenvolvimento de um modelo equivalente de avaliação de propriedades térmicas para a elaboração de uma biblioteca de componentes construtivos brasileiros para o uso no programa EnergyPlus. Relatório Técnico. Florianópolis: Universidade Federal de Santa Catarina/Laboratório de Eficiência Energética em Edificações, 2017. Disponível em: http://www.labeee.ufsc.br/sites/default/files/publicacoes/relatorios_pesquisa/Biblioteca_ComponentesConstrutivos_0.pdf. Acesso em: 16 out. 2018.

WELLS, M.; THELEN, L. What does your workspace say about you?: The influence of personality, status, and workspace on personalization. Environment and Behavior, v. 34, n. 3, p. 300–321, maio 2002. DOI: https://doi.org/10.1177/0013916502034003002.

WIENOLD, J.; CHRISTOFFERSEN, J. Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, v. 38, n. 7, p. 743–757, jul. 2006. DOI: https://doi.org/10.1016/j.enbuild.2006.03.017.

YANG, W.; MOON, H. J. Combined effects of acoustic, thermal, and illumination conditions on the comfort of discrete senses and overall indoor environment. Building and Environment, v. 148, p. 623–633, jan. 2019. DOI: https://doi.org/10.1016/j.buildenv.2018.11.040.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.