Banner Portal
Climate change impact on the indoor thermal environment of unifamiliary housing in Cuiabá-MT
PDF (Português (Brasil))

Keywords

Thermal resilience
Building envelope
Environmental sustainability
Global warming

How to Cite

GUARDA, Emeli Lalesca Aparecida da; DURANTE, Luciane Cleonice; CALLEJAS, Ivan Julio Apolonio. Climate change impact on the indoor thermal environment of unifamiliary housing in Cuiabá-MT. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 11, p. e020031, 2020. DOI: 10.20396/parc.v11i0.8657188. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8657188. Acesso em: 17 jul. 2024.

Abstract

The objective of this research is to evaluate the impacts of climate change on the thermal and energectic performance of social housing located in the city of Cuiabá-MT, considering proposals to adapt its envelope both in the Base Scenario (1961-1990) and in the prospecting scenarios of heating global - 2020 (2011-2040), 2050 (2041-2070) and 2080 (2071-2100). Prospecting was done through computer simulation, using the EnergyPlus software, following the methodological steps: preparation of future climate files;  definition of the type of constructive housing of social interest called "HISp"; implementation of adjustments in the envelope to fit the best levels of Brazilian norms and regulations for thermal and energectic performance in the Base Scenario, obtaining the typology called "HISa"; computational simulation of the temperature and humidity of the outside air and inside the environments of prolonged residence; and comparative analysis of interventions. The quantified impacts point to an average annual temperature variation and relative humidity of the air of 21.5% (+ 5.75 ° C) and 22% (-15.4%), respectively, up to Scenario 2080, if compared to the Base Scenario. The envelopes of the HISa and HISp dwellings were classified as "A" and "D" in the Base Scenario and both as "E" in the 2080 Scenario. The relative energy consumption for artificial thermal conditioning provided for HISp and HISa may rise by 83.75% and 99.63%, respectively, in 2080 compared to the Base Scenario. If the prevailing climatic conditions prevail, they may impede maintaining the envelope's energy efficiency rating as "A," triggering high energy consumption for cooling.

https://doi.org/10.20396/parc.v11i0.8657188
PDF (Português (Brasil))

References

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15.220-2: Desempenho térmico de edificações - Método de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2005.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15.575-1: Edificações habitacionais - Desempenho - Requisitos gerais. Rio de Janeiro, 2013.

ALVES, C. A. Resiliência das Edificações às mudanças climáticas na região metropolitana de São Paulo – Estudo de caso: Desempenho térmico de edifícios residenciais para idosos. 2014. Dissertação (Mestrado) - Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo. São Paulo, 2014. DOI: https://doi.org/10.11606/D.16.2015.tde-28082015-101646

BELCHER, S; HACKER, J; POWELL, D. Constructing design weather data for future climates. Building Services Engineering Research and Technology, v.26, p. 46-61, 2005. https://doi.org/10.1191/0143624405bt112oa

BRASIL. Caixa Econômica Federal. Standard Project Popular Houses 42m. 2007. Disponível em: http://www.caixa.gov.br/site/paginas/downloads.aspx/ Acesso em: 8 Abri. 2018.

CALLEJAS, I. J. A.; BIUDES. M. S.; MACHADO, N. G.; DURANTE, L. C.; LOBO, F. A. Patterns of Energy Exchange For Tropical Urban And Rural Ecosystems Located In Brazil Central. Journal of Urban and Environmental Engineering (JUEE), v.13, n.1, p.69-79, 2019. https://doi.org/10.4090/juee.2019.v13n1.069079

CAMPELO JÚNIOR, J. H; PRIANTE FILHO, N; CASEIRO, F. T. Caracterização macroclimática de Cuiabá. In: ENCONTRO NACIONAL DE ESTUDOS SOBRE O MEIO AMBIENTE, 1991, Londrina. Anais [...]. Londrina: Universidade Estadual de Londrina, Núcleo de Estudos do Meio Ambiente, 1991, 773p.

CASAGRANDE, B. ALVAREZ, C. Preparação de arquivos climáticos futuros para avaliação dos impactos das mudanças climáticas no desempenho termoenergético de edificações. Ambiente Construído, Porto Alegre, v.13, n.4, p. 173-187, 2013. DOI: https://doi.org/10.1590/S1678-86212013000400012

DE WILDE P; COLEY D. The implications of a changing climate for buildings. Build Environment, v.55, n.1-7, 2012.

DOE - DEPARMENT OF ENERGY. EnergyPlus. Energyplus.net. Disponível em: https://energyplus.net. Acesso em: 16 de maio de 2018.

DU, H; EDGE, J; UNDERWOOD, C. Modelling the Impacts of New UK Future Weather Data on a School Building. Building Simulation, p. 538-545, 2011. DOI: https://doi.org/10.1016/j.buildenv.2012.03.014

DUARTE, D. H. S. Padrões de ocupação do solo e microclimas urbanos na região de clima tropical continental. 2000. f. 296. Tese (Doutorado) - Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo. São Paulo, 2000.

FAHMY, M; MAHDY, M. M; NIKOLOPOULOU. Prediction of future energy consumption reduction using GRC envelope optimization for residential buildings in Egypt. Energy and Buildings, v. 70, p. 186. Egypt, 2014. DOI: https://doi.org/10.1016/J.ENBUILD.2013.11.057

GUARDA, E. L. A; DOMINGOS, R. M. A; JORGE, S. H. M; DURANTE, L. C; SANCHES, J. C. M; LEÃO, M; CALLEJAS, I. J. A. The influence of climate change on renewable energy systems designed to achive zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities and Society, v. 52, p.101843. 2019. DOI: https://doi.org/10.1016/j.scs.2019.101843

GUARDA, E. L. A; DURANTE, L. C; CALLEJAS, I. J. A; JORGE, S. H. M; BRANDÃO, R. P. Estratégias construtivas para adequação da envoltória de uma Habitação de Interesse Social às Zonas Bioclimáticas Mato-Grossenses. Revista Engineering and Science (E&S), v. 7, n.1, p.45-57. Cuiabá, 2018. DOI: https://doi.org/10.18607/ES201876138

INMETRO - INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA. Requisitos técnicos da qualidade para nível de eficiência energética de edifícios residenciais. Disponível em: http://www.pbeedifica.com.br/sites/default/files/projetos/etiquetagem/residencial/downloads/Manual_RTQR_102014.pdf. Acesso: 10 de julho de 2018

IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, 2007.

IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Geneva Switzerland, 2012.

INVIDIATA, A; GHISI, E. Impact of climate change on heating and cooling energy demand in houses in Brasil. Energy and Building, v. 130, p. 20-32, 2016. DOI: https://doi.org/10.1016/j.enbuild.2016.07.067

KERSHAW, T; EAMES, M; COLEY, D. Assessing the risk of climate change for buildings: A comparison between multi-year and probabilistic reference year simulations. Building and Environment, v. 46, pp. 1303-1308, 2011. DOI: https://doi.org/10.1016/j.buildenv.2010.12.018

MACIEL, A. A; FORD, B; LAMBERTS, R. Main Influences on the design philosophy and knowledge basis to bioclimatic integration into architecture design – The example of best practices. Building and Environmental, v. 42, p. 3762-3773. 2007. DOI: https://doi.org/10.1016/j.buildenv.2006.07.041

OLGYAY, V. Design with climate. Bioclimatic Approach to Architectural Regionalism. p. 309-310, New Jersey, 1973.

PEEL, M. C; FINLAYSON, B. L; MCMAHON T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11, p.1633-1644, 2007. DOI: https://doi.org/10.5194/hess-11-1633-2007

ROBERT, A; KUMMERT, M. Designing Net-Zero Energy Buildings for the Future Climate, Not for the Past. Building and Environment, v. 55, p. 150-158, 2012. DOI: https://doi.org/10.1016/j.buildenv.2011.12.014

SABUNAS A, KANAPICKAS A. Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software. Energy Procedia, vol. 128, p. 92–9, 2017. https://doi.org/10.1016/j.egypro.2017.09.020

SERRA, G. Pesquisa em arquitetura e urbanismo guia prático para o trabalho de pesquisadores em pós-graduação. São Paulo: Edusp/ Mandarin, 2006, 256p.

SONG, X; YE C. Climate Change Adaptation Pathways for Residential Buildings in Southern China. Energy Procedia, v. 105, p. 3062–7, 2017. https://doi.org/10.1016/j.egypro.2017.03.635

TRIANA, M. A; LAMBERTS, R. SASSI, P. Desempenho de Habitações de interesse social frente às mudanças climáticas. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO. 16., 2016. São Paulo. Anais […]. Porto Alegre:ANTAC, 2016. Disponível em: http://www.infohab.org.br/entac/2016/ENTAC2016_paper_763.pdf

WANG, L; LIU, X; BROWN H. Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy and Buildings, v. 157, p. 218-226, dec. 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.01.007

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 PARC Research in Architecture and Building Construction

Downloads

Download data is not yet available.