Banner Portal
Simulation-based optimization for an origami-shaped canopy
PDF

Keywords

Multicriteria design optimization
Transitional spaces
Octopus
Physiological equivalent temperature
Useful daylight illuminance

How to Cite

LUCARELLI, Caio de Carvalho; CARLO, Joyce Correna; MARTÍNEZ, Andressa Carmo Pena. Simulation-based optimization for an origami-shaped canopy. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 11, p. e020013, 2020. DOI: 10.20396/parc.v11i0.8658250. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8658250. Acesso em: 30 jun. 2024.

Abstract

This study perceives the developing process of Simulation-based Optimization (SBO), using Octopus® for Grasshopper®. This investigation aimed to optimize an Origami-inspired canopy designed to admit solar radiation and daylight in transitional spaces. As optimization objectives, we employed the maximization of Physiological Equivalent Temperature (PET) and Useful Daylight Illuminance (UDI). The method consists of shape optimization, considering the exclusion of non-robust parameters according to factorial analysis. The second step regards computational simulations for the admission of solar radiation and daylight performance within transitional spaces, followed by a comparative evaluation of the best solutions generated through the simulation process. We ran the simulations using Ladybug® and Honeybee® plugins. We simulated the canopy in three different transitional zones, which resulted in distinct shapes and performances. We adopted transitional spaces because they are neither indoor nor outdoor, and comfort standards are rarely evaluated. As the main results, the optimization generated maximum comfort of 93.75% for PET Percentage Time Comfortable and 93.8% for UDI for naturally conditioned spaces. These results denote that users are in thermal comfort for 93.75% of the time. For 93.8% of the evaluated time, illuminance levels are between 100 and 2000lx, and therefore in agreement with the recommended levels.

https://doi.org/10.20396/parc.v11i0.8658250
PDF

References

ANDJELKOVIC, A. S.; MUJAN, I.; DAKIC, S. Experimental validation of an EnergyPlus model: Application of a multi-story naturally ventilated double skin façade. Energy and Buildings, v. 118, p. 27–36, 2016. DOI:https://doi.org/10.1016/j.enbuild.2016.02.045

CAMPOS, F. M. D. Estudo do uso de parametrização e simulações computacionais nas etapas iniciais do processo de projeto visando à otimização. 2017. 191 f. Dissertação (Mestrado em Arquitetura e Urbanismo) —Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas. 2017. Disponível em: http://repositorio.unicamp.br/handle/REPOSIP/322276. Acesso em: 01 de setembro de 2019

CARTANA, R. P. Desempenho térmico e lumínico de elementos de controle solar para fachadas desenvolvidos com modelagem paramétrica e fabricação digital. 2018. Tese (Doutorado em Arquitetura e Urbanismo) —Departamento de Arquitetura e Urbanismo, Universidade Federal de Santa Catarina, Florianópolis. 2018. Disponível em: https://repositorio.ufsc.br/handle/123456789/193318. Acesso em: 03 Setembro de 2019

CHO, J.; YOO, C.; KIM, Y. Viability of exterior shading devices for high-rise residential buildings: Case study for cooling energy saving and economic feasibility analysis. Energy and Buildings, v. 82, p. 771–785, 2014. DOI:https://doi.org/10.1016/j.enbuild.2014.07.092

CHUN, C.; KWOK, A.; TAMURA, A. Thermal comfort in transitional spaces — basic concepts: literature review and trial measurement. Building and Environment, v. 39, p. 1187–1192, 2004. DOI:https://doi.org/10.1016/j.buildenv.2004.02.003

DELGARM, N.; SAJADI, B.; KOWSARY, F.; DELGARM, S. Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Applied Energy, v. 170, p. 293–303, 2016. DOI:https://doi.org/10.1016/j.apenergy.2016.02.141

ELTAWEEL, A.; SU, Y. Parametric design and daylighting: A literature review. Renewable and Sustainable Energy Reviews, v. 73, p. 1086–1103, 2017. DOI:https://doi.org/10.1016/j.rser.2017.02.011

FANG, Y. Optimization of Daylighting and Energy Performance Using Parametric Design, Simulation Modeling, and Genetic Algorithms. 2017. 123 f. Tese (Doutorado em Design)—Graduate Faculty of North Carolina, North Caroline State University, Raleigh. 2017. Disponível em: https://repository.lib.ncsu.edu/handle/1840.20/33696. Acesso em: 01 setembro de 2019

FONSECA, L. P. G.; NUNES, V. D. L.; SANTANA, L. O.; CARLO, J. C.; CÉSAR JÚNIOR, K. M. L. Otimização multiobjetivo das dimensões dos ambientes de uma residência unifamiliar baseada em simulação energética e estrutural. Ambiente Construído, v. 17, n. 1, p. 267–288, 2017. DOI:https://doi.org/10.1590/s1678-86212017000100135

FRAZER, J. Parametric Computation: History and Future. Architectural Design, v. 86, p. 18–23, 2016. DOI:https://doi.org/10.1002/ad.2019

GARBER, R. Optimisation Stories: The Impact of Building Information Modelling on Contemporary Design Practice. Architectural Design, v. 79, n. 2, p. 6–13, 2009. DOI:https://doi.org/10.1002/ad.842

GOSSARD, D.; LARTIGUE, B.; THELLIER, F. Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy and Buildings, v. 67, p. 253–260, 2013. DOI:https://doi.org/10.1016/j.enbuild.2013.08.026

GROBMAN, Y.; CAPELUTO, G.; AUSTERN, G. External shading in buildings: comparative analysis of daylighting performance in static and kinetic operation scenarios. Architectural Science Review, v. 60, n. 2, p. 126–136, 2017. DOI:https://doi.org/10.1080/00038628.2016.1266991

GUIMARÃES, Í. Análises de Incertezas e Sensibilidade de Arquivos Climáticos e seus impactos em simulações computacionais termo energéticas. 2016. 95 f. Dissertação (Mestrado em Arquitetura e Urbanismo) —Departamento de Arquitetura e Urbanismo, Universidade Federal de Viçosa, Viçosa. 2016. Disponível em: https://www.locus.ufv.br/handle/123456789/20623. Acesso em 28 de outubro de 2019

KIRIMTAT, A.; KREJCAR, O.; EKICI, B.; TASGETIREN, M. Multi-objective energy and daylight optimization of amorphous shading devices in buildings. Solar Energy, v. 185, p. 100–111, 2019. DOI:https://doi.org/10.1016/j.solener.2019.04.048

KO, Y. Urban Form and Residential Energy Use. Journal of Planning Literature, v. 28, n. 4, p. 327–351, 2013. DOI:https://doi.org/10.1177/0885412213491499

KOLAREVIC, B.; MALKAWI, A. Performative Architecture: Beyond Instrumentality. Nova York: Spoon Press, 2006. v. 60. DOI:https://doi.org/10.1111/j.1531-314x.2006.00068_1.x

LARTIGUE, B.; LASTERNAS, B.; LOFTNESS, V. Multi-objective optimization of building envelope for energy consumption and daylight. Indoor and Built Environment, v. 23, n. 1, p. 70–80, 2014. DOI:https://doi.org/10.1177/1420326X13480224

LOPES, F.; CÓSTOLA, D.; LABAKI, L. Simulação De Estratégias Bioclimáticas Passivas Para Edifício De Escritórios Em Clima Tropical Semiúmido. In: XIV Encontro Nacional de Conforto no Ambiente Construído, 2017, Balneário Camboriú. Anais […]. Balneário Camboriú: ENCAC, 2017, p. 1-11. Disponível em: https://www.researchgate.net/publication/323524962_SIMULACAO_DE_ESTRATEGIAS_BIOCLIMATICAS_PASSIVAS_PARA_EDIFICIO_DE_ESCRITORIOS_EM_CLIMA_TROPICAL_SEMIUMIDO. Acesso em: 27 de outubro de 2019

LUCARELLI, C. D. C.; CARLO, J. C. Parametric Modeling Simulation for an origami shaped canopy. Frontiers of Architectural Research, v. 9, n. 1, p. 67-81, 2020. DOI:https://doi.org/10.1016/j.foar.2019.08.001

MACHAIRAS, V.; TSANGRASSOULIS, A.; AXARLI, K. Algorithms for optimization of building design: A review. Renewable and Sustainable Energy Reviews, v. 31, p. 101–112, 2014. DOI:https://doi.org/10.1016/j.rser.2013.11.036

MATEUS, N.; PINTO, A.; GRAÇA, G. da. Validation of EnergyPlus thermal simulation of a double skin naturally and mechanically ventilated test cell. Energy and Buildings, v. 75, p. 511–522, 2014. DOI:https://doi.org/10.1016/j.enbuild.2014.02.043

MATZARAKIS, A.; MAYER, H. Another kind of environmental stress: Thermal stress. Who Newsletter, v. 18, p. 7–10, 1996. Disponível em: https://www.researchgate.net/publication/233759000_Another_kind_of_environmental_stress_Thermal_stress. Acesso em: 15 de outubro de 2019

NABIL, A.; MARDALJEVIC, J. Useful daylight illuminance: A replacement for daylight factors. Energy and Buildings, v. 38, n. 7, p. 905–913, 2006. DOI:https://doi.org/10.1016/j.enbuild.2006.03.013

NGUYEN, A.; REITER, S.; RIGO, P. A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, v. 113, p. 1043–1058, 2014. DOI:https://doi.org/10.1016/j.apenergy.2013.08.061

OCHOA, C.; ARIES, M.; HENSEN, J. State of the Art in Lighting Simulation for Building Science: A Literature Review. Journal of Building Performance Simulation, p. 37–41, 2012. DOI:https://doi.org/10.1080/19401493.2011.558211

OXMAN, R. Theory and design in the first digital age. Design Studies, v. 27, n. 3, p. 229–265, 2006. DOI:https://doi.org/10.1016/j.destud.2005.11.002

PENG, Y.; FENG, T.; TIMMERMANS, H. A path analysis of outdoor comfort in urban public spaces. Building and Environment, v. 148, n. August 2018, p. 459–467, 2019. DOI:https://doi.org/10.1016/j.buildenv.2018.11.023

PEREIRA, E. B.; MARTINS, F. R.; GONÇALVES, A.; COSTA, R.; LIMA. F.; RÜTHER, R.; DE ABREU, S.; TIEPOLO, G. PEREIRA, S.; DE SOUZA, J. 2017. Atlas Brasileiro de Energia Solar (2a edição). São José dos Campos: Inpe. Disponível em: https://www.researchgate.net/publication/319305620_Atlas_Brasileiro_de_Energia_Solar_-_2_Edicao/citations. Acesso em: 18 de outubro de 2019

PITTS, A. Thermal Comfort in Transition Spaces. Buildings, v. 3, n. 1, p. 122–142, 2013. DOI:https://doi.org/10.3390/buildings3010122

REINHART, C.; MARDALJEVIC, J.; ROGERS, Z. Dynamic Daylight Performance Metrics for Sustainable Building Design. The journal of the illuminating Engineering Society of North America, v. 3, n. 1, p. 7–31, 2006. DOI:https://doi.org/10.1582/LEUKOS.2006.03.01.001

ROUDSARI, M.; PAK, M. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In: 13TH Conference of International Building Performance Simulation Association, 2013, França. Anais […]. França: IBPSA, 2013, p. 3128-3135. Disponível em: https://www.researchgate.net/publication/287778694_Ladybug_A_parametric_environmental_plugin_for_grasshopper_to_help_designers_create_an_environmentally-conscious_design. Acesso em: 18 de outubro de 2019

WONG, I. A review of daylighting design and implementation in buildings. Renewable and Sustainable Energy Reviews, v. 74, n. February, p. 959–968, 2017. DOI:https://doi.org/10.1016/j.rser.2017.03.061

YIGIT, S.; OZORHON, B. A simulation-based optimization method for designing energy efficient buildings. Energy and Buildings, v. 178, p. 216–227, 2018. DOI:https://doi.org/10.1016/j.enbuild.2018.08.045

YU, X.; SU, Y. Daylight availability assessment and its potential energy saving estimation -A literature review. Renewable and Sustainable Energy Reviews, v. 52, p. 494–503, 2015. DOI:https://doi.org/10.1016/j.rser.2015.07.142

ZHOU, J.; MOHD NAZI, W.; WANG, Y.; ROSKILLY, A. Investigating the impact of building’s facade on the building’s energy performance - A case study. Energy Procedia, v. 158, p. 3144–3151, 2019. DOI:https://doi.org/10.1016/j.egypro.2019.01.1016

I accept that PARC Research in Architecture and Building Construction journal perform, on the original file approved for publication, revisions and modifications in orthoghaphic, grammar and standard issues.

I give to PARC Research in Architecture and Building Construction journal the rights of first publication of the revised version of my paper, licensed under the 'Creative Commons Attribution' license (which allows sharing the work with the recognition of first authorship and publication in this journal).

Downloads

Download data is not yet available.