Banner Portal
Influence of inventory cutoff rules on whole-building LCA results
PDF (Português (Brasil))

Keywords

Life Cycle Assesment
Whole-building LCA
Cutoff rules
LEED
Certification

How to Cite

PULGROSSI, Lizzie Monique; SILVA, Vanessa Gomes da. Influence of inventory cutoff rules on whole-building LCA results. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 11, p. e020026, 2020. DOI: 10.20396/parc.v11i0.8658259. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8658259. Acesso em: 17 jul. 2024.

Abstract

The scarce publications on whole-building lifecycle assessment (wbLCA) highlights the need to reduce the number of flows considered. Cutoff rules facilitate inventory modeling, but their effects are underexplored in the literature. This work investigates how the most well-known cutoff approaches used in wbLCA - by mass and energy, as indicated by the EN 15804 standard, and by building elements, as adopted by LEED v4 certification – influence the assessment results, relatively to a baseline, complete inventory. Cradle to grave impacts was calculated for two case studies. SimaPro v8.5/9.0 supported processes composition and adaptation from the Ecoinvent database. CML-IA baseline and CED methods were used for impact assessment, and k-means clustering highlighted relationships amongst environmental categories. Whilst the European cutoff rule retains a considerable share of impacts on all categories, the elements excluded by the LEED approach mostly impact non-assessed categories, such as ecotoxicity, human toxicity, and abiotic depletion. These categories are highly affected by some building materials production. The free choice of three environmental categories to assess may also result in information redundancy whenever they pertain to the same cluster. To balance inventory completion viability while ensuring the integrity of wbLCA conclusions, we recommend that the certification compute over 75% of the metals used in the building and strategically expand the set of categories evaluated on a mandatory basis. Additional studies are now needed to confirm our findings and validate propositions for certification-oriented wbLCA.

https://doi.org/10.20396/parc.v11i0.8658259
PDF (Português (Brasil))

References

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575-1: Edificações Habitacionais - Desempenho Parte 1: Requisitos gerais Prefácio. Rio de Janeiro: 2013.

ACERO, A.; RODRIGUEZ, C.; CIROTH, A. LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories, v1.5.4. Open LCA Report, 23p, 2015.

BRASIL. Ministério da Educação. Fundo Nacional de Desenvolvimento da Educação. Projeto Espaço Educativo Urbano e Rural – 6 salas. Revisão 2015. Disponível em: https://www.fnde.gov.br/programas/par/eixos-de-atuacao/infraestrutura-fisica-escolar. Acesso em: 08 ago. 2020.

CEN -EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 15804 - Sustainability of construction works - Environmental product declarations – Core rules for the product category of construction products. [s.l.] British Standards Institution, 2012.

CEN - EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 15978 - Sustainability of construction works — Assessment of environmental performance of buildings — Calculation method. [s.l.] British Standards Institution, 2011.

DOBBELSTEEN, A.A.J.F.; ARETS, M.; NUNES, R. Sustainable design of supporting structures. Optimal structural spans and component combinations for effective improvement of environmental performance. Construction Innovation, v.7, n. 1, p. 54-71, Emerald Group Publishing, 2007.

EC JRC-IES. International Reference Life Cycle Data System (ILCD) Handbook - general guide for life cycle assessment - detailed guidance. First ed. Luxembourg: Publications Office of the European Union, 2010.

EEBGUIDE PROJECT. EeBGuide Guidance Document - Part B: Buildings - Operational Guidance for Life Cycle Assessment Studies of the Energy Efficient Buildings Initiative. Disponível em: www.eebguide.eu, 2012. Acesso em: 14 jun. 2019.

GOMES, V. et al. Exploring lifecycle energy and greenhouse gas emissions of a case study with ambitious energy compensation goals in a cooling-dominated climate. Energy and Buildings, v. 173, p. 302–314, ago. 2018a. DOI: https://doi.org/10.1016/j.enbuild.2018.04.063.

GOMES, V. et al. LEED v4 approach to LCA at whole-building Level. In: CONGRESSO BRASILEIRO SOBRE GESTÃO DO CICLO DE VIDA, 6., Brasília, 2018. Anais [...]. Brasília: IBICT e ABCV, 2018b.

HAAPIO, A.; VIITANIEMI, P. Environmental effect of structural solutions and building materials to a building. Environmental Impact Assessment Review, v.28, n.8, p.587-600, 2008. DOI: https://doi.org/10.1016/j.eiar.2008.02.002 .

IEA - INTERNATIONAL ENERGY AGENCY. Evaluation of embodied energy and CO2eq for building construction (Annex 57) – Overview of Annex 57 results. Energy in Buildings and Communities (EBC) Programme. September 2016. 100 p. Disponível em: http://www.annex57.org/wp/wp-content/uploads/2017/05/Overview-Report.pdf. Acesso em: 08 ago. 2020.

ISO - INTERNATIONAL STANDARD ORGANIZATION. ISO 14040 - Environmental management - Life cycle assessment - Principles and framework. Switzerland: ISO, 2006a.

ISO - INTERNATIONAL STANDARD ORGANIZATION. ISO 14044 - Environmental management - Life cycle assessment - Requirements and guidelines. Switzerland: ISO, 2006b.

ISMAEEL, W. S. E. Midpoint and endpoint impact categories in Green building rating systems. Journal of Cleaner Production, v. 182, p. 783–793, 1 maio 2018. DOI: http://dx.doi.org/10.1016/j.jclepro.2018.01.217 .

KELLENBERGER, D.; ALTHAUS, H. Relevance of simplifications in LCA of building components. Building and Environment, v. 44, n. 4, p. 818-25, 2009. DOI: https://doi.org/10.1016/j.buildenv.2008.06.002 .

LAMBERTZ, M. et al. Importance of building services in ecological building assessments. E3S Web of Conferences, v. 111, n. 03061, 2019. DOI: https://doi.org/10.1051/e3sconf/201911103061 .

LASVAUX, S. et al. Correlations in Life Cycle Impact Assessment methods (LCIA) and indicators for construction materials: What matters? Ecological Indicators, v. 67, p. 174–182, ago. 2016. DOI: https://doi.org/10.1016/j.ecolind.2016.01.056 .

LESSARD, Y. et al. LEED v4: Where Are We Now? Critical Assessment through the LCA of an Office Building Using a Low Impact Energy Consumption Mix. Journal of Industrial Ecology, v. 00, n. 0, p. 1–12, 5 set. 2017. DOI: https://doi.org/10.1111/jiec.12647 .

MOON, K. S. Sustainable design of tall building structures and façades. In: CIB INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE BUILT ENVIRONMENT, 3., 2009, Delft. Proceedings […]. The Netherlands: CIB, v.1, p.1-8, 2009.

MORALES, M. et al. Regionalized inventory data in LCA of public housing: A comparison between two conventional typologies in southern Brazil. Journal of Cleaner Production, v. 238, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.117869 .

PINI. TCPO - Tabela de Composições de Preços para Orçamentos - Engenharia Civil, Construção e Arquitetura. 13a ed. São Paulo: Pini, 2008.

PULGROSSI, Lizzie Monique. Influência das regras de corte nos resultados de avaliação do ciclo de vida de edificações completas. 2020. 113 f. Dissertação (Mestrado) – Programa de Pós-Graduação em Arquitetura, Tecnologia e Cidade, Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas, 2020.

SAADE, M.R.M.; SILVA, M. G.; GOMES, V. A Avaliação do Ciclo de Vida (ACV) e a etapa de avaliação de impactos ambientais: considerações sobre o uso de diferentes métodos e seus reflexos nos resultados finais. Natureza On Line, Espírito Santo, v. 13, p. 109-116, 2014. Disponível em: http://www.naturezaonline.com.br/natureza/conteudo/pdf/02_SaadeMRMetal_109-116.pdf . Acesso em: 15 ago. 2020.

PRé. SimaPro Database Manual Methods Library. Report v4.15. June 2020. 74 p.

SOUST-VERDAGUER, B.; LLATAS, C.; GARCÍA-MARTÍNEZ, A. Simplification in life cycle assessment of single-family houses: A review of recent developments. Building and Environment, v. 103, p. 215–227, 1 jul. 2016. DOI: http://dx.doi.org/10.1016/j.buildenv.2016.04.014 .

TODD, J. A. Buildings, Systems Thinking, and Life Cycle Assessment. In: CURRAN, M. A. (Ed.). Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products. Salem, MA, USA: Scrivener Publishing LLC, 2012. p. 311–328. DOI: https://doi.org/10.1002/9781118528372.ch14 .

USGBC -U.S. GREEN BUILDING COUNCIL. LEED Reference Guide for Building Design and Construction. Washington D.C., 2013. Disponível em: https://www.usgbc.org/resources/leed-v4-building-design-and-construction-current-version . Acesso em: 06 mar. 2019.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2020 PARC Research in Architecture and Building Construction

Downloads

Download data is not yet available.