Banner Portal
PMV extension to evaluate thermal comfort of elderly women in naturally ventilated rooms
PDF (Português (Brasil))

Keywords

Thermal comfort
Elderly women
PMV

How to Cite

RUVIARO, Raiana Spat; ZAMBONATO, Bruna; GRIGOLETTI, Giane de Campos. PMV extension to evaluate thermal comfort of elderly women in naturally ventilated rooms. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 12, n. 00, p. e021002, 2021. DOI: 10.20396/parc.v12i00.8658443. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8658443. Acesso em: 17 jul. 2024.

Abstract

The aging of the population requires creating conditions for the elderly to live with quality. Buildings' thermal comfort is essential to achieve this goal. This research analyzes the Predicted Mean Vote (PMV) and its extension (PMVe) to assess elderly women's thermal comfort conditions, aged 60 years or above. The study was conducted in two naturally ventilated senior homes in Santa Maria, RS, region with a temperate climate and hot summer. The study measured air temperature, air relative humidity, globe temperature, and air velocity. The study also performed a data survey on the perception and thermal preferences, clothing, and metabolic activity of the elderly. Then, the comfort sensation index was calculated. Users' thermal sensation was compared with PMV and PMVe, considering expectation factors of 0.5, 0.7, and 0.9. Comparing the three PMVe values, we could estimate that the lower the expectation factor, the smaller the difference between the PMVe and the negative thermal sensation votes (cold). The PMVe with correction factor 0.5 presented a perfect correlation for the PMV variables and the thermal sensation to 11.54% of the measurements. In contrast, the PMVe of 0.7 and 0.9 showed no points over the correlation reference line. The study demonstrated that the PMV extension does not correct the PMV inaccuracies but reduces the thermal sensation's differences, reducing the cold sensation overestimation of PMV results for elderly women.

https://doi.org/10.20396/parc.v12i00.8658443
PDF (Português (Brasil))

References

ABNT - Associação Brasileira de Normas Técnicas. NBR 15220-3: Desempenho térmico de edificações – Parte 3: Zoneamento bioclimático brasileiro e estratégias de condicionamento térmico passivo para habitações de interesse social. Rio de Janeiro, 2005.

ABOUBAKRI, O. et al. Thermal comfort and mortality in a dry region of Iran, Kerman; a 12-year time series analysis. Theoretical and Applied Climatology, v. 139, n. 1-2, p. 403-413, 2020. DOI: https://doi.org/10.1007/s00704-019-02977-8

ANDERSON, G. S.; MENEILLY, G. S.; MEKJAVIC, I. B. Passive temperature lability in the elderly. European Journal of Applied Physiology and Occupational Physiology, v. 73, n. 3-4, p. 278-286, 1996. DOI: https://doi.org/10.1007/BF02425488

ASHRAE - AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS. ASHRAE Handbook Fundamentals: Thermal Comfort. Capítulo 9. Atlanta, 2009.

ASHRAE - AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS. ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy. Atlanta, 2017.

BAQUERO LARRIVA, M. T.; HIGUERAS GARCÍA, E. Thermal comfort for the elderly: A systematic review of the scientific literature. Revista Espanola de Geriatria y Gerontologia, v. 54, n. 5, p. 280-295, 2019. DOI: https://doi.org/10.1016/j.regg.2019.01.006

BONGANHA, V. et al. Predictive Equations Overestimate the Resting Metabolic Rate in Postmenopausal Women. The Journal of Nutrition, Health & Aging, v. 17, n. 3, p. 211-214, 2013. DOI: https://doi.org/10.1007/s12603-012-0395-3

BRAGER, G. S.; DEAR, R. J. Thermal adaptation in the built environment: A literature review. Energy and Buildings, v. 27, n. 1, p. 83-96, 1998. DOI: https://doi.org/10.1016/S0378-7788(97)00053-4

DEAR, R.; BRAGER, G.; COOPER, D. Developing an Adaptive Model of Thermal Comfort and Preference. Final Report, ASHRAE RP-884, Mar.1997.

FANGER, P. O. Thermal comfort: analysis and applications in environmental engineering. Copenhagen: Danish Technical Press, 1970.

FANGER, P. O.; TOFTUM, J. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and buildings, v.34, n. 6, p. 533-536, 2002. DOI: https://doi.org/10.1016/S0378-7788(02)00003-8

GRIEFAHN, B.; KUNEMUND, C. The effects of gender, age, and fatigue on susceptibility to draft discomfort. Journal of Thermal Biology, v. 26, p. 395-400, 2001. DOI: https://doi.org/10.1016/S0306-4565(01)00050-X

GUYTON, A. C.; HALL, J. E. Guyton and Hall Textbook of Medical Physiology. 12. ed. Jackson: Elsevier, 2010.

HAVENITH, G. Temperature regulation and technology. Gerontechnology, v. 1, n. 1, p. 41-49, 2001. DOI: https://doi.org/10.4017/GT.2001.01.01.004.00

HOYT, T. et al. CBE Thermal Comfort Tool. Berkeley: Center for the Built Environment, University of California, 2017. Disponível em: http://cbe.berkeley.edu/comforttool. Acesso em: maio 2018.

HUGHES, C. et al. Winter thermal comfort and health in the elderly. Energy Policy, v. 134, p. 110954, 2019. DOI: https://doi.org/10.1016/j.enpol.2019.110954

HUGHES, C.; NATARAJAN, S. Summer thermal comfort and overheating in the elderly. Department of Architecture and Civil Engineering, University of Bath. Building Services Engineering Research Technology, Bath, v. 40, n. 4, p. 426-445, 2019. DOI: https://doi.org/10.1177/0143624419844518

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Agência de Notícias. Em 2016, expectativa de vida era de 75,8 anos. Dez. 2017. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/18470-em-2016-expectativa-de-vida-era-de-75-8-anos.html. Acesso em: fev. 2020.

INMET - INSTITUTO NACIONAL DE METEOROLOGIA. Dados meteorológicos – Histórico de dados meteorológicos. Disponível em: https://portal.inmet.gov.br/dadoshistoricos. Acesso em: jul. 2020.

INMET - INSTITUTO NACIONAL DE METEOROLOGIA. Dados meteorológicos – Mapa de estações meteorológicas. Disponível em: https://mapas.inmet.gov.br/. Acesso em: ago. 2019.

ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7726: Ergonomics of the thermal environment - Instruments and methods for measuring physical quantities. Geneva International Standards Institution, 1998.

ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7730: Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva International Standards Institution, 2005.

ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 8996: Ergonomics: Determination of metabolic heat production. Genebra, 2004.

KARJALAINEN, S. Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Building and Environment, v. 42, n. 4, p. 1594-1603, 2007. DOI: https://doi.org/10.1016/j.buildenv.2006.01.009

KENEY, W. L.; MUNCE, T. A. Invited Review: aging and human temperature regulation. Journal of Applied Physiology, v. 95, n. 6, p. 2598-2603, 2003. DOI: https://doi.org/10.1152/japplphysiol.00202.2003

KRÜGER, E. L.; ROSSI, F. A. Effect of personal and microclimatic variables on observed thermal sensation from a field study in southern Brazil. Building and Environment, v. 46, n. 3, p. 690-697, 2011. DOI: https://doi.org/10.1016/j.buildenv.2010.09.013

KUINCHTNER, A.; BURIOL, G. A. Clima do estado do Rio Grande do Sul segundo a classificação climática de Koppen e Thornthwaite. Disciplinarum Scientia, Santa Maria, v.2 p. 171-182, 2001. DOI: https://doi.org/10.37779/nt.v2i1.1136

LEYVA, E. W. A.; BEARMAN, A.; DAVIDSON, P. M. Health impact of climate change in older people: an integrative review and implication for nursing. Journal of Nursing Scholarship, v.49, n.6, 2017, p. 670-678. DOI: https://doi.org/10.1111/jnu.12346

MAHAN, L. K.; STUMP, S. E. Krause: Alimentos, Nutrição e Dietoterapia. São Paulo: Editora Roca, 1998.

MENDES, A. et al. The Influence of Thermal Comfort on the Quality of Life of Nursing Home Residents. Journal of Toxicology and Environmental Health, v. 80, n. 13-15, p. 729-739, 2017. DOI: https://doi.org/10.1080/15287394.2017.1286929

MIFFLIN, M. D. et al. A new predictive equation for resting energy expenditure in healthy individuals. American Journal of Clinical Nutrition, v. 51, n. 2, p. 241-247, 1990. DOI: https://doi.org/10.1093/ajcn/51.2.241

MONTANHEIRO, F. P. Percepção térmica de idosos. 2016. 70 p. Dissertação (Mestrado em Arquitetura e Urbanismo) – Universidade Estadual Paulista, Bauru, 2016.

NAÇÕES UNIDAS. World Population Prospects 2019: Highlights. ST/ESA/SER.A/423. Disponível em: https://population.un.org/wpp/Publications/. Acesso em: jul. 2019.

NICOL, J. F.; HUMPHREYS, M. A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, v. 34, n. 6, p. 563-572, 2002. DOI: https://doi.org/10.1016/S0378-7788(02)00006-3

PANET, M. F. Um futuro confortável: modelagem preditiva de sensação térmica de pessoas idosas residentes em localidade do semiárido da Paraíba/Brasil. 2018. 168p. Tese (Doutorado em Arquitetura e Urbanismo) – Universidade Federal do Rio Grande do Norte, Natal, 2018.

PANET, M. F; ARAÚJO, V. M. D.; ARAÚJO, E. H. S. No calor da idade: parâmetros de conforto térmico para idosos residentes em localidade do semiárido paraibano. Ambiente Construído, Porto Alegre, v. 20, n. 2, p. 135–149, 2020. DOI: https://doi.org/10.1590/s1678-86212020000200392

PARSONS, K. C. The Effects of Gender, Acclimation State, the Opportunity to Adjust Clothing and Physical Disability on Requirements for Thermal Comfort. Energy and Buildings, v. 34, n. 6, p. 593-599, 2002. DOI: https://doi.org/10.1016/S0378-7788(02)00009-9

REIDLINGER, D. P.; WILLIS, J. M.; WHELAN, K. Resting metabolic rate and anthropometry in older people: a comparison of measured and calculated values. Journal of Human Nutrition and Dietetics, v. 28, n. 1, p. 72-84, 2015. DOI: https://doi.org/10.1111/jhn.12215

ROSSATO, M. S. Os climas do Rio Grande do Sul: Variabilidade, tendências e tipologia. 2011. 253f. Tese (Doutorado em Geografia) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2011.

RUVIARO, R. S. Influência da população idosa feminina na avaliação de conforto térmico pelo modelo de Fanger. 2018. 180f. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de Santa Maria, Santa Maria, 2018.

RUVIARO, R.S.; GRIGOLETTI, G. de C; ZAMBONATO, B. Aplicação do modelo de Fanger na avaliação do conforto térmico da população idosa feminina. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 15.; ENCONTRO LATINO-AMERICANO DE CONFORTO NO AMBIENTE CONSTRUÍDO, 11., 2019, João Pessoa. Anais [...]. Porto Alegre: ANTAC, 2019.

SARTORI, M. da G. B. Clima e percepção. 2000. Tese (Doutorado em Geografia) – Universidade de São Paulo, São Paulo, 2000.

SON, J. Y. et al. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. International Journal of Biometeorology, v. 60, n. 1, p. 113-121, 2016. DOI: https://doi.org/10.1007/s00484-015-1009-7

SOUSA, M. C. B. Desejo por conforto térmico: Estratégias adaptativas e modelos de conforto térmico no semiárido paraibano. 2018. Dissertação. 134f. (Mestrado em Arquitetura e Urbanismo) – Universidade Federal da Paraíba, João Pessoa, 2018.

TSUZUKI, K.; IWATA, T. Thermal comfort and thermoregulation for elderly people taking light exercise. In: INTERNATIONAL CONFERENCE ON INDOOR AIR QUALITY AND CLIMATE, 9., 2002, California. Proceedings [...] Rotterdam: Indoor Air, 2002. p.647-652.

TSUZUKI, K.; OHFUKU, T. Thermal sensation and thermoregulation in elderly compared to young people in Japanese winter season. In: INTERNATIONAL CONFERENCE ON INDOOR AIR QUALITY AND CLIMATE, 9., 2002, California. Proceedings [...] Rotterdam: Indoor Air, 2002. p.659-664.

VAN HOOF, J.; HENSEN, J. L. M. Thermal Comfort and Older Adults.Gerontechnology, v. 4, n. 4, p. 223-228, 2006. DOI: https://doi.org/10.4017/gt.2006.04.04.006.00

WHO. WORLD HEALTH ORGANIZATION. COP24 special report: Health and climate change. Geneva: World Health Organization, 2018.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 PARC Research in Architecture and Building Construction

Downloads

Download data is not yet available.