Banner Portal
Evaluation of crack bridging in adhered waterproofing systems
PDF (Português (Brasil))

Keywords

Crack bridging ability
Waterproofing systems
Adhered waterproofing systems
2D digital image correlation (DIC)

How to Cite

SANTOS, Julie Anne Braun dos; SANTOS, Felipe Pereira; MONTE, Renata. Evaluation of crack bridging in adhered waterproofing systems. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 12, n. 00, p. e021003, 2021. DOI: 10.20396/parc.v12i00.8661114. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8661114. Acesso em: 17 jul. 2024.

Abstract

Waterproofing systems adhered to concrete structures produce a protective barrier against fluids and aggressive agents' penetrations. However, if cracks appear in the substrate and are transmitted to the adhered waterproof layer, the system's water tightness can be compromised. This work aims to perform an experimental evaluation of two waterproofing membranes' behavior, based on acrylic, when adhered to concrete substrates subject to cracking. A mechanical test method based on indirect tensile stress associated with Digital Image Correlation analysis (DIC) is proposed to assess the transfer of cracks from concrete substrates to bonded waterproofing membranes. The results showed that this methodology allows distinguishing the membranes' behavior concerning the transfer of cracks. It was also possible to measure quantitatively, with the DIC technique, the degree of crack in the concrete that resulted in cracking in the membranes. The pure acrylates membrane resulted in less stress dissipation from the substrate than the acrylic copolymer without cement membrane. This behavior can be related to the difference in the elongation of the materials. The adhesion of the membranes to the substrate was high and considerably higher than the normative requirements, and can be associated with the membrane's difficulty in dissipating the substrate stress, cracking more easily.

https://doi.org/10.20396/parc.v12i00.8661114
PDF (Português (Brasil))

References

AMERICAN SOCIETY FOR TESTING AND MATERIALS. C1305/C1305M: Standard Test Method for Crack Bridging Ability of Liquid-Applied Waterproofing MembraneWest Conshohocken, United States, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13321: Membrana acrílica para impermeabilização. Rio de Janeiro, 2008.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15885: Membrana de polímero acrílico com ou sem cimento, para impermeabilização. Rio de Janeiro, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575: Edificações habitacionais — Desempenho Parte 5: Requisitos para os sistemas de coberturas. Rio de Janeiro, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12171: Aderência aplicável em sistema de impermeabilização composto por cimento impermeabilizante e polímeros. Rio de Janeiro, 2019.

BRAUN, J.; SANTOS, F.; MONTE, R.. Proposta de metodologia para avaliação da transferência de fissuras entre o substrato e o sistema de impermeabilização aderido. In: WORKSHOP DE TECNOLOGIA DE PROCESSOS E SISTEMAS CONSTRUTIVOS, 2., 2019, Brasil. Anais [...] São Paulo: IPT, 2019. Disponível em: <https://antaceventos.net.br/index.php/tecsic/tecsic2019/paper/view/322>. Data de acesso: 13 Jan. 2021.

BRÜHWILER, E.; WITTMANN, F. H. The wedge splitting test, a new method of performing stable fracture mechanics tests. Engineering Fracture Mechanics, Great Britain, v. 35, p. 117–125, 1990. DOI: https://doi.org/10.1016/0013-7944(90)90189-N.

CALLISTER, Willian. Fundamentos da Ciência e engenharia de materiais: uma abordagem integrada. 4. ed. Rio de Janeiro: LTC, 2018.

CHIEN, Chi Hui; SU, Ting Hsuan; HUANG, Chao Jian; CHAO, Yuh Jin; YEH, Wei Li; LAM, Poh Sang. Application of digital image correlation (DIC) to sloshing liquids. Optics and Lasers in Engineering, v. 115, n. August 2018, p. 42–52, 2019. DOI: https://doi.org/10.1016/j.optlaseng.2018.11.016.

DEL REY CASTILLO, Enrique; ALLEN, Tom; HENRY, Richard; GRIFFITH, Michael; INGHAM, Jason. Digital image correlation (DIC) for measurement of strains and displacements in coarse, low volume-fraction FRP composites used in civil infrastructure. Composite Structures, v. 212, n. January, p. 43–57, 2019. DOI: https://doi.org/10.1016/j.compstruct.2019.01.024.

DELUCCHI, M.; BARBUCCI, A.; CERISOLA, G. Crack-bridging ability of organic coatings for concrete: influence of the method of concrete cracking, thickness and nature of the coating. Progress in Organic Coatings, v. 49, n. 4, p. 336–341, 2004. DOI: https://doi.org/10.1016/j.porgcoat.2003.09.016.

DELUCCHI, M.; BARBUCCI, A.; TEMTCHENKO, T.; POGGIO, T.; CERISOLA, G. Study of the crack-bridging ability of organic coatings for concrete: analysis of the mechanical behaviour of unsupported and supported films. Progress in Organic Coatings, v. 44, n. 4, p. 261–269, 2002. DOI: https://doi.org/10.1016/S0300-9440(02)00054-1.

DELUCCHI, M.; CERISOLA, G. Influence of thickness on mechanical properties and crack-bridging ability of coatings for concrete. Progress in Organic Coatings, v. 54, n. 4, p. 305–309, 2005. DOI: https://doi.org/10.1016/j.porgcoat.2005.07.005.

DELUCCHI, M.; CERISOLA, G. Influence of temperature on crack-bridging ability of coatings for concrete. Progress in Organic Coatings, v. 75, n. 3, p. 253–258, 2012. DOI: https://doi.org/10.1016/j.porgcoat.2012.05.006

DIAMANTI, M. V.; BRENNA, A.; BOLZONI, F.; BERRA, M.; PASTORE, T.; ORMELLESE, M. Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Construction and Building Materials, v. 49, p. 720–728, 2013. DOI: https://doi.org/10.1016/j.conbuildmat.2013.08.050.

EUROPEAN ORGANISATION FOR TECHNICAL APPROVALS. Technical Report 013: Determination of crack-bridging capability.2004. Disponível em: https://www.eota.eu/en-GB/content/technical-reports/28/.

EUROPEAN ORGANISATION FOR TECHNICAL APPROVALS. Technical Report 033:Test method for discontinuously laid bituminous roof covering products – Determination of watertightness. 2009.

EUROPEAN ORGANISATION FOR TECHNICAL APPROVALS. European Technical Approval Guidelines 033: Liquid Applied Bridge Deck Waterproofing Kits. Brussels, 2010. Disponível em: https://www.eota.eu/en-GB/content/etags/26/.

EUROPEAN STANDARD. 1062-7: Paints and varnishes Coating materials and coating systems for exterior masonry and concrete Part 7: Determination of crack bridging properties.Brussels, 2004.

EUROPEAN STANDARD. 14224: Flexible sheets for waterproofing - Waterproofing of concrete bridge decks and other concrete surfaces trafficable by vehicles - Determination of crack bridging abilityBrussels, 2010.

EUROPEAN STANDARD. 14891: Liquid applied water impermeable products for use beneath ceramic tiling bonded with adhesives - Requirements, test methods, assessment and verification of constancy of performance, classification and marking.Brussels, 2017.

GLASSER, Fredrik P.; MARCHAND, Jacques; SAMSON, Eric. Durability of concrete - Degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, v. 38, n. 2, p. 226–246, 2008. DOI: https://doi.org/10.1016/j.cemconres.2007.09.015 .

GRIBNIAK, Viktor; RIMKUS, Arvydas; PÉREZ CALDENTEY, Alejandro; SOKOLOV, Aleksandr. Cracking of concrete prisms reinforced with multiple bars in tension–the cover effect. Engineering Structures, v. 220, p. 110979, 2020. DOI: https://doi.org/10.1016/j.engstruct.2020.110979.

HOLTER, Karl Gunnar. Performance of EVA-Based membranes for SCL in hard rock. Rock Mechanics and Rock Engineering, v.49, n.4, p.1329-1358, 2016. DOI: https://doi.org/10.1007/s00603-015-0844-5.

INTERNATIONAL DIGITAL IMAGE CORRELATION SOCIETY. A Good Practices Guide for Digital Image Correlation. 2018. DOI: https://doi.org/10.32720/idics/gpg.ed1.

ISSA, Camille A.; DEBS, Pauls. Experimental study of epoxy repairing of cracks in concrete. Construction and Building Materials, v. 21, n. 1, p. 157–163, 2007. DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.030.

JAEGERMANN, C.; PUTERMAN, M. The evaluation of the crack-bridging ability of exposed roof coatings. Materials and Structures, v. 20, n. 6, p. 403–407, 1987. DOI: https://doi.org/10.1007/BF02472490.

KONG, Lijuan; FANG, Jun; ZHOU, Xiangming; HAN, Mengdi; LU, Haoran. Assessment of coatings for protection of cement paste against microbial induced deterioration through image analysis. Construction and Building Materials, v. 191, p. 342–353, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.041.

KUBAL, Michael T. Construction Waterproofing Handbook, p.33, 2. ed. United States. ISBN 0071489738.

LEPAGE, W. S.; SHAW, J. A.; DALY, S. H. Optimum Paint Sequence for Speckle Patterns in Digital Image Correlation. Experimental Techniques, v. 41, n. 5, p. 557–563, 2017. DOI: https://doi.org/10.1007/s40799-017-0192-3.

LIU, Wei He; ZHANG, Lu Wen; LIEW, K. M. Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model. Journal of the Mechanics and Physics of Solids, v. 143, p. 104072, 2020. DOI: https://doi.org/10.1016/j.jmps.2020.104072.

MENGEL, Lena; KRAUSS, Hans Werner; LOWKE, Dirk. Water transport through cracks in plain and reinforced concrete – Influencing factors and open questions. Construction and Building Materials, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118990 .

RIBEIRO, S.; EXPOSITO, C. C. D.; RODRIGUES, J.; CARLOS, S. Projeto, adaptação, instalação e testes preliminares para um sistema de medida de energia de fratura de materiais cerâmicos pelo método da cunha. Cerâmica, v. 54, p. 418–426, 2008.DOI: https://doi.org/10.1590/S0366-69132008000400006.

SEGURA-CASTILLO, Luis; MONTE, Renata; DE FIGUEIREDO, Antonio D. Characterisation of the tensile constitutive behaviour of fibre-reinforced concrete: A new configuration for the Wedge Splitting Test. Construction and Building Materials, v. 192, p. 731–741, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.101.

SRIRAVINDRARAJAH, Rasiah; TRAN, Elizebeth. Waterproofing practices in Australia for building construction. MATEC Web of Conferences, v.195. The 4th International Conference on Rehabilitation and Maintenance in Civil Engineering, 2018. DOI: http://dx.doi.org/10.1051/matecconf/201819501002.

SUTTON, M. A.; YAN, J. H.; TIWARI, V.; SCHREIER, H. W.; ORTEU, J. J. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Optics and Lasers in Engineering, v. 46, n. 10, p. 746–757, 2008. DOI: https://doi.org/10.1016/j.optlaseng.2008.05.005.

VAN LOOCK, Frederik; FLECK, Norman A. Deformation and failure maps for PMMA in uniaxial tension. Polymer, v. 148, p. 259–268, 2018. DOI: https://doi.org/10.1016/j.polymer.2018.06.027.

WALDVOGEL, Marius; ZURBRIGGEN, Roger; BERGER, Alfons; HERWEGH, Marco. The microstructural evolution of cementitious, flexible waterproofing membranes during deformation with special focus on the role of crazing. Cement and Concrete Composites, v. 107, p. 103494, 2020a. DOI: https://doi.org/10.1016/j.cemconcomp.2019.103494.

WALDVOGEL, Marius; ZURBRIGGEN, Roger; BERGER, Alfons; HERWEGH, Marco. Influences of temperature and opening rate of substrate cracks on the mechanical behaviour, crack–bridging ability and deformation mechanisms of one–component, cementitious, flexible waterproofing membranes. Cement and Concrete Research, v. 136, p. 106140, 2020b. DOI: https://doi.org/10.1016/j.cemconres.2020.106140.

ZHAO, Hong; LI, Wei; ZHANG, Yong Ming. Study on Crack Bridging Ability of Polymer-Modified Cement Based Compounds for Waterproofing Material. Advanced Materials Research, v. 1129, p. 217–221, 2015. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1129.217.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 PARC Research in Architecture and Building Construction

Downloads

Download data is not yet available.