Banner Portal
A influência de cânions urbanos no conforto térmico
PDF (English)

Palavras-chave

Modelagem da informação da cidade
Planejamento urbano
Gestão urbana
Brasil
CIM

Como Citar

LEMOS, Daniel Conforte da Silva; BARBOSA, Sabrina Andrade; LIMA, Fernando Tadeu de Araújo. A influência de cânions urbanos no conforto térmico: o caso de Juiz de Fora. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, n. 00, p. e022016, 2022. DOI: 10.20396/parc.v13i00.8665783. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8665783. Acesso em: 25 abr. 2024.

Resumo

Com as mudanças climáticas e a tendência de intensificação da urbanização nas cidades modernas, novas pesquisas sobre o conforto e a habitabilidade das áreas urbanas modernas vêm ganhando cada vez mais atenção. Os processos de urbanização geralmente resultam em ilhas de calor urbanas, espaços densos e centrais onde a temperatura do ar é mais alta quando comparada às áreas periféricas. O aumento da temperatura nesses espaços causa desconforto térmico, impactando diretamente na qualidade de vida das pessoas. A morfologia urbana impacta a percepção térmica dos usuários ao limitar ou permitir a incidência solar e ventos locais, interferindo no conforto térmico percebido pelas pessoas. É o caso dos cânions urbanos, fenômeno morfológico que pode reduzir a incidência solar e a velocidade dos ventos locais, alterando as trocas de calor entre os edifícios e o ar, alterando o conforto térmico. Assim, por meio de abordagens paramétricas, o presente trabalho visa identificar como as mudanças na morfologia urbana impactaram as condições térmicas de um cânion urbano da área central de Juiz de Fora, Minas Gerais, Brasil. As análises, que compararam três momentos diferentes da história (1940, 1980 e 2020), foram realizadas com o software Ladybug Suite Tools / Grasshopper para o software Rhinoceros; e foram baseados no Índice de Clima Térmico Universal (UTCI). Os mapas gerados indicam as mudanças no conforto térmico local durante seu desenvolvimento histórico. Os resultados demonstraram que o processo de urbanização, que ocorreu com o passar dos anos, afetou fortemente as condições térmicas do cânion ao nível do pedestre.

https://doi.org/10.20396/parc.v13i00.8665783
PDF (English)

Referências

ABDOLLAHZADEH, N.; BILORIA, N. Outdoor thermal comfort: Analyzing the impact of urban configurations on the thermal performance of street canyons in the humid subtropical climate of Sydney. Frontiers of Architectural Research, v. 10, n. 2, p. 394–409, 2021. DOI: https://doi.org/10.1016/j.foar.2020.11.006.

AMORIN, M. C. C. T. Intensidade e forma da ilha de calor urbana em Presidente Prudente/SP: episódios de inverno. Geosul, v. 20, n. 39, p. 64–82, 2005. Disponível em: https://periodicos.ufsc.br/index.php/geosul/article/view/13307/12269. Acesso em: 20 0ut. 2021.

ANDREOU, E.; AXARLI, K. Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renewable Energy, v. 43, p. 354–363, 2012. DOI: https://doi.org/10.1016/j.renene.2011.11.038.

ASSIS. D. C. O conforto térmico associado às variáveis de cobertura da terra na região central de Juiz de Fora – MG. 2016. 196 f. Dissertação (Mestrado) - Instituto de Ciências Humanas, Programa de Pós-graduação em Geografia, Universidade Federal de Juiz de Fora. Juiz de Fora, 2016.

BASSO, L. C.; BERTUZZI, F. B.; LIMA, M.; PORTELLA, J.; CARDOSO, G.; SILVA, T. Geometria e microclima urbano: simulações computacionais em área de média densidade na cidade de Passo Fundo/RS. In: SEMINÁRIO INTERNACIONAL DE CONSTRUÇÕES SUSTENTÁVEIS, 7., 2018, Passo Fundo. Anais [...]. Passo Fundo: IMED, 2018. p. 121-138. Disponível em: https://soac.imed.edu.br/index.php/sics/viisics/schedConf/. Acesso em: 18 jan. 2021.

BORNSTEIN, R. D. Observations of the Urban Heat Island Effect in New York City. Journal of Applied Meteorology, Boston, v. 7, n. 4, p. 575-582, Aug. 1968.

BOURBIA, F.; BOUCHERIBA, F. Impact of street design on urban microclimate for semi arid climate (Constantine). Renewable Energy, v. 35, n. 2, p. 343–347, Feb. 2010. DOI: https://doi.org/10.1016/j.renene.2009.07.017.

COUTTS, A. M.; WHITE, E. C.; TAPPER, N. J.; BERINGER, J.; LIVESLEY, S. J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology, v. 124, n. 1–2, p. 55–68, May 2016. DOI https://doi.org/10.1007/s00704-015-1409-y.

EVOLA, G.; COSTANZO, V.; MAGRI, C.; MARGANI, G.; MARLETTA, L. NABONI, E. A novel comprehensive workflow for modelling outdoor thermal comfort and energy demand in urban canyons: Results and critical issues. Energy and Buildings, v. 216, 109946, June 2020. DOI: https://doi.org/10.1016/j.enbuild.2020.109946.

FERREIRA, L. F.; CARRILHO, S. T.; MENDES, P. C. Áreas verdes urbanas: uma contribuição aos estudos das ilhas de frescor. Brazilian Geographical Journal: Geosciences and Humanities research medium, v. 6, n. 2, p. 101–120, July/ Dec. 2015.

GARTLAND, L. Heat Islands: Understanding and mitigating heat in urban areas. Abingdon: Routledge, 2008. 214 p.

GIMENEZ, L.; HIPPOLYTE, J. L; ROBERT, S.; SUARD, F.; ZREIK, K. Review: Reconstruction of 3D building information models from 2D scanned plans. Journal of Building Engineering, v. 2, p. 24–35, 2015. DOI: https://doi.org/10.1016/j.jobe.2015.04.002.

GONG, F. Y.; ZENG, Z.; ZHANG, F.; LI, X.; NG, E.; NORFORD, L. K. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building and Environment, v. 134, p. 155–167, Apr. 2018. DOI https://doi.org/10.1016/j.buildenv.2018.02.042.

HERRMANN, J.; MATZARAKIS, A. Mean radiant temperature in idealized urban canyons-examples from Freiburg, Germany. International Journal of Biometeorology, v. 56, n. 1, p. 199–203, Jan. 2012. DOI: https://doi.org/10.1007/s00484-010-0394-1.

JOHANSSON, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, v. 41, n. 10, p. 1326–1338, Oct. 2006. DOI: https://doi.org/10.1016/j.buildenv.2005.05.022.

JUIZ DE FORA. Prefeitura de Juiz de Fora - MG. Plano Diretor de Desenvolvimento Urbano de Juiz de Fora: Juiz de Fora Sempre. Lei n.9811/00. Juiz de Fora: FUNALFA, 2004.

KIM, S. W.; BROWN, R. D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Science of the Total Environment, v. 779, 146389, July 2021. DOI: https://doi.org/10.1016/j.scitotenv.2021.146389.

KITOUS, S.; BENSALEM, R.; ADOLPHE, L. Airflow patterns within a complex urban topography under hot and dry climate in the Algerian Sahara. Building and Environment, v. 56, p. 162–175, Oct. 2012. DOI: https://doi.org/10.1016/j.buildenv.2012.02.022.

KÖPPEN, W. Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt (Schluss). Geographische Zeitschrift, Stuttgart, v. 6, n. 12, p. 657–679, Jan. 1900.

KOWALSKI, L. F. Influência do albedo de pavimentos no campo térmico de cânions urbanos: estudo de modelo em escala reduzida. 2019. 124 f. Dissertação (Mestrado em Engenharia Urbana) - Centro de Ciências Exatas e de Tecnologia, Programa de Pós-graduação em Engenharia Urbana, Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12196. Acesso em: 20 out. 2021.

MACKEY, C.; GALANOS, T.; NORFORD, L.; ROUDSARI, M. S.; BHD, N. S. Wind, Sun, Surface Temperature and Heat Island: Critical Variables for High-Resolution Outdoor Thermal Comfort Payette Architects, In: INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION CONFERENCE, 15., 2017, San Francisco. Proceedings [...]. Cambridge: Massachusetts Institute of Technology, 2017. p. 985–993.

MATZARAKIS, A.; NASTOS, P. T. Human-biometeorological assessment of heat waves in Athens. Theoretical and Applied Climatology, v. 105, n. 1, p. 99–106, 2011. DOI: https://doi.org/10.1007/s00704-010-0379-3.

MUNIZ-GÄAL, L. P.; PEZZUTO, C. C.; CARVALHO, M. F. H.; MOTA, L. T. M. Urban geometry and the microclimate of street canyons in tropical climate. Building and Environment, v. 169, 106547, Feb. 2020. DOI: https://doi.org/10.1016/j.buildenv.2019.106547.

NABONI, E.; MELONI, M.; KAEMP, J.; MACKEY, C. The Simulation of Mean Radiant Temperature in Outdoor Conditions: A review of Software Tools Capabilities. In: INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION CONFERENCE, 16., 2019. Proceedings […]. Rome: IBPSA, 2019. p. 3234–3241. DOI: https://doi.org/10.26868/25222708.2019.210301.

NABONI, E.; MELONI, M.; KAEMPF, J.; COCCOLO, S.; SCARTEZZI, J. An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia, v. 122, p. 1111–1116, Sept. 2017. DOI: https://doi.org/10.1016/j.egypro.2017.07.471.

NAKATA-OSAKI, C. M.; SOUZA, L. C. L. DE; RODRIGUES, D. S. Impacto da geometria do cânion urbano na intensidade de ilha de calor noturna: análise através de um modelo simplificado adaptado a um SIG. Ambiente Construído, v. 16, n. 3, p. 73–87, 2016. DOI: http://dx.doi.org/10.1590/s1678-86212016000300093.

NASTOS, P. T.; MATZARAKIS, A. The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology, v. 108, n. 3–4, p. 591–599, 2012. DOI: https://doi.org/10.1007/s00704-011-0555-0.

NUNEZ, M.; OKE, T. R. Energy Balance of an Urban Canyon. Journal of Applied Meteorology, v. 16, n. 1, p. 11–19, Jan. 1977. DOI: https://doi.org/10.1175/1520-0450(1977)016<0011:TEBOAU>2.0.CO;2.

OECD. ORGANISATION FOR ECONOMIC AND CO-OPERATION DEVELOPMENT. Urban population by city size (indicator). 2022. DOI: https://doi.org/10.1787/b4332f92-en.

OKE, T. R. Canyon Geometry and the Urban Heat Island: Comparison of scale model and field observations. Journal of Climatology, v. 1, n. 3, p. 237–254, July/Sept. 1981. DOI: https://doi.org/10.1002/joc.3370010304.

OKE, T. R. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, v. 108, n. 455, p. 1–24, Jan. 1982. DOI: https://doi.org/10.1002/qj.49710845502.

PARK, S.; TULLER, S. E.; JO, M. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning, v. 125, p. 146–155, May 2014. DOI: https://doi.org/10.1016/j.landurbplan.2014.02.014.

POMERANTZ, M.; PON, B.; AKBARI, H.; CHANG, S. The Effect of Pavements Temperatures On Air Temperatures in Large Cities. Berkeley: Lawrence Berkeley National Laboratory 2000. p. 22. (LBNL – 43442).

PONT, M. B; HAUPT, P. Spacematrix: space, density and urban form. Rotterdam: Nai010, 2021.

RAJAGOPALAN, P.; LIM, K. C.; JAMEI, E. Urban heat island and wind flow characteristics of a tropical city. Solar Energy, v. 107, p. 159–170, Sept. 2014. DOI: https://doi.org/10.1016/j.solener.2014.05.042.

RIBEIRO, C. R.; GONÇALVES, A. P.; BASTOS, F. P. Ilhas de calor urbanas e conforto térmico humano em cidades de porte médio: estudo aplicado em Juiz de Fora (MG). Raega O Espaço Geográfico em Análise, Curitiba, v. 45, n. 1, p. 281-300, 2018. DOI: http://dx.doi.org/10.5380/raega.v45i1.51262.

ROSSI, F. A; KRÜGER, E.; NIKOLOPOULOU, M. A influência da configuração urbana no microclima e na sensação térmica em ruas de pedestre de Curitiba, Paraná. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 11., 2011, Búzios. Anais […]. Rio de Janeiro: ANTAC, 2011.

ROUDSARI, M. S.; PAK, M.; SMITH, A.; GILL, G. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In: CONFERENCE OF THE INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION, 13., 2013, Chambéry. Proceedings […]. Chambéry: IBPSA, 2013. p. 3128–3135. Disponível em: https://www.aivc.org/sites/default/files/p_2499.pdf. Acesso em: 20 out. 2021.

SAILOR, D. J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. International Journal of Climatology, v. 31, n. 2, p. 189–199, Feb. 2011. DOI: https://doi.org/10.1002/joc.2106.

SAMPAIO, Júlio César Ribeiro. Triângulo da memória de Juiz de Fora. Seropédica: Universidade Federal Rural do Rio de Janeiro, 2010. 28 p. Disponível em: http://portal.iphan.gov.br/uploads/publicacao/Artigo_do_Patrimonio_TrigMemoJF_Julio_Sampaio.pdf. Acesso em: 21 out.

SYAFII, N. I.; ICHINOSE, M.; KUMAKURA, E.; JUSUF, S. K.; CHIGUSA, K; WONG, N. H. Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustainable Cities and Society, v. 34, p. 79–89, Oct. 2017. DOI: https://doi.org/10.1016/j.scs.2017.06.012.

TAHA, H. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, v. 25, n. 2, p. 99–103, 1997. DOI: https://doi.org/10.1016/S0378-7788(96)00999-1.

WANG, Y.; AKBARI, H. The effects of street tree planting on Urban Heat Island mitigation in Montreal. Sustainable Cities and Society, v. 27, p. 122–128, 2016. DOI: https://doi.org/10.1016/j.scs.2016.04.013.

YANG, W.; WONG, N. H.; JUSUF, S. K. Thermal comfort in outdoor urban spaces in Singapore. Building and Environment, v. 59, p. 426–435, Jan. 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.09.008.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 PARC Pesquisa em Arquitetura e Construção

Downloads

Não há dados estatísticos.