Banner Portal
Phase change materials as a passive cooling system in light prefabricated social housing
PDF (Português (Brasil))

Keywords

PC
Thermal comfort
Phase change material
Social housing
Energyplus

How to Cite

ALMEIDA, Fernando da Silva; BRANDALISE, Mariane Pinto; MIZGIER, Martin Ordenes. Phase change materials as a passive cooling system in light prefabricated social housing. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, n. 00, p. e022027, 2022. DOI: 10.20396/parc.v13i00.8666777. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8666777. Acesso em: 1 jul. 2024.

Abstract

Phase Change Materials (PCM) can store or release thermal energy through temperature fluctuations, which can stabilize internal temperature fluctuations, improving the efficiency of buildings. Several studies assess energy consumption; however, issues that explore the limitations of PCM as a passive system to ensure comfortable conditions in naturally ventilated environments are still developing. Thus, this article aims to analyze the implementation of PCMs as a passive method in a naturally ventilated prefabricated building of social interest, in the summer season, through simulations in three cities in Brazil, namely: Brasília (DF), Palmas (TO) and Santa Maria (RS). In the analyzes carried out, the PCM 22 incorporated in the roof and wall simultaneously was the situation that obtained the best result for the city of Brasília, keeping approximately 100% of the hours in comfort. In Santa Maria, the PCM 25 deployed on the roof and wall together obtained the best result, with only 8% of the hours for the comfort range. In comparison, in Palmas, the same model presented approximately 82% of the hours in comfort. In all cases, the use of PCM was positive, reducing the residence's thermal amplitude and improving its thermal inertia.

https://doi.org/10.20396/parc.v13i00.8666777
PDF (Português (Brasil))

References

ADILKHANOVA, I.; MEMON, S. A; KIM, A.; SHERYEV, A. A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy, v. 217, p. 119390-119401, Feb. 2021. DOI: https://doi.org/10.1016/j.energy.2020.119390.

ÁLVAREZ, S.; CABEZA, L. F.; RUIZ-PARDO, A.; CASTELL, A.; TENORIO, J. A. Building integration of PCM for natural cooling of buildings. Applied Energy, v. 109, p. 514-522, Sept. 2013. DOI: https://doi.org/10.1016/j.apenergy.2013.01.080.

ASHRAE. AMERICAN SOCIETY OF HEATINGREFRIGERATING AND AIR CONDITIONING ENGINEERS. ANSI/ASHRAE Standard. 55-2020: Thermal Environmental Conditions for Human Occupancy. Atlanta: ASHRAE, 2020.

BAETENS, R.; JELLE, B. P.; GUSTAVSEN, A. Phase change materials for building applications: A state-of-the-art review. Energy and Buildings, v. 42, n. 9, p. 1361-1368, Sept. 2010. DOI: https://doi.org/10.1016/j.enbuild.2010.03.026.

BELTRÁN, R. D.; MARTÍNEZ-GÓMEZ, J. Analysis of phase change materials (PCM) for building wallboards based on the effect of environment. Journal of Building Engineering, v. 24, 100726, July 2019. DOI: https://doi.org/10.1016/j.jobe.2019.02.018.

CAIXA ECONÔMICA FEDERAL. Programa Minha Casa Minha Vida. Brasil, [200?]. Disponível em: https://www.caixa.gov.br/voce/habitacao/minha-casa-minha-vida/Paginas/default.aspx. Acesso em: 03 set. 2022.

CARDOSO, M. R. D.; MARCUZZO, F. F. N.; BARROS, J. R. Classificação climática de Köppen-geiger para o Estado de Goiás e o Distrito Federal. ACTA Geográfica, v. 8, n. 16, jan./mar. 2014, p. 40-55. DOI: 10.5654/actageo2014.0004.0016.

EPE. EMPRESA DE PESQUISA ENERGÉTICA. Balanço Energético Nacional 2021: ano base 2020. Rio de Janeiro: EMPRESA DE PESQUISA ENERGÉTICA, 2021. 292 p. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf. Acesso em: 13 maio 2022.

EVOLA, G.; MARLETTA, L.; SICURELLA, F. A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Building and Environment, v. 59, p. 517-527, Jan. 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.09.021.

FERRAZ, A. M.; OLIVEIRA, M. C. Definição do ano climático de referência (TRY) para a cidade de Palmas-Tocantins. Revista Desafios, v. 7, n. 2, mar. 2020. Disponível em: https://sistemas.uft.edu.br/periodicos/index.php/desafios/article/view/7472/16593. Acesso em: 22 set. 2022.

IEA. INTERNATIONAL ENERGY AGENCY. 2019 Global Status Report for Buildings and Construction: toward a zero-emissions, efficient and resilient buildings and construction sector. Paris: INTERNATIONAL ENERGY AGENCY, Dec. 2019. 41 p. Disponível em: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019. Acesso em: 6 jan. 2020.

KABDRAKHMANOVA, M.; MEMON, S. A.; SAURBAYEVA, A. Implementation of the panel data regression analysis in PCM integrated buildings located in a humid subtropical climate. Energy, v. 237, 121651, Dec. 2021. DOI: https://doi.org/10.1016/j.energy.2021.121651.

KASAEIAN, A., BAHRAMI, L.; POURFAYAZ, F.; KHODABANDEH, E.; YAN, W-M. Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. Energy and Buildings, v. 154, p.96-112, Nov. 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.08.037.

LEI, J.; YANG, J.; YANG, E.-H. Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Applied Energy, v. 162, p. 207-217, Jan. 2016. DOI: https://doi.org/10.1016/j.apenergy.2015.10.031.

MANDILARAS, I.; STAMATIADOU, M.; KATSOURINIS, D.; ZANNIS, G.; FOUNTI, M. Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls. Building and Environment, v. 61, p. 93-103, Mar. 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.12.007.

MARIN, P.; SAFFARI, M.; GRACIA, A.; ZHU, X.; FARID, M. M.; CABEZA, L. F.; USHAK, S. Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy and Buildings, v. 129, p. 274-283, Oct. 2016. DOI: https://doi.org/10.1016/j.enbuild.2016.08.007.

MARKARIAN, E.; FAZELPOUR, F. Multi-objective optimization of energy performance of a building considering different configurations and types of PCM. Solar Energy, v. 191, p. 481-496, Oct. 2019. DOI: https://doi.org/10.1016/j.solener.2019.09.003.

MOHAMED, S. A.; AL-SULAIMAN, F. A.; IBRAIM, N. I.; ZAHIR, M. H.; AL-AHMED, A.; SAIDUR, R.; YILBAŞ, B. S.; SAHIN, A. A. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renewable and Sustainable Energy Reviews, v. 70, p. 1072-1089, Apr. 2017. DOI: https://doi.org/10.1016/j.rser.2016.12.012.

OLIVEIRA, R. B. de; GONZALES, T. S.; CARVALHO, M. T. M. Uso de PCM para edificações em região de clima quente: uma revisão sistemática. PARC Pesquisa em Arquitetura e Construção, v. 12, p. e021001, 2021. DOI: https://doi.org/10.20396/parc.v12i00.8658590.

OZDENEFE, M.; DEWSBURY, J. Thermal performance of a typical residential Cyprus building with phase change materials. Building Services Engineering Research and Technology, v. 37, n. 1, p. 85-102, 3 set. 2015. DOI: https://doi.org/10.1177/0143624415603004.

PISELLI, C.; PRABHAKAR, M.; GRACIA, A.; SAFFARI, M.; PISELLO, A. L.; CABEZA, L. F. Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renewable Energy, v. 162, p. 171-181, Dec. 2020. DOI: https://doi.org/10.1016/j.renene.2020.07.043.

PONS, V.; STANESCU, G. Materiais com mudança de fase: análise de desempenho energético para o Brasil. PARC Pesquisa em Arquitetura e Construção, v. 8, n. 2, p. 127–140, 2017. DOI: https://doi.org/10.20396/parc.v8i2.8650228.

RAHIMPOUR, Z.; FACCANI, A.; AZUATALAM, D.; CHAPMAN, A.; VERBIČ, G. Using Thermal Inertia of Buildings with Phase Change Material for Demand Response. Energy Procedia, v. 121, p. 102-109, Sept. 2017. DOI: https://doi.org/10.1016/j.egypro.2017.07.483.

RAMAKRISHNAN, S.; WANG, X.; SANJAYAN, J.; WILSON, J. Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Applied Energy, v. 194, p. 410-421, May 2017. DOI: https://doi.org/10.1016/j.apenergy.2016.04.084.

REILLY, A.; KINNANE, O. The impact of thermal mass on building energy consumption. Applied Energy, v. 198, p. 108-121, July 2017. DOI: https://doi.org/10.1016/j.apenergy.2017.04.024.

RUBITHERM TECHNOLOGIES GmbH. Phase Change Material: PCM RT-LINE - Versatile Organic PCM for Your Application. Berlin: RUBITHERM TECHNOLOGIES GmbH, 2021. Disponível em: https://www.rubitherm.eu/en/productcategory/organische-pcm-rt. Acesso em: 20 abr. 2021.

SAFFARI, M.; GRACIA, A.; FERNÁNDEZ, C.; CABEA, L. F. Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Applied Energy, v. 202, p. 420-434, Sept. 2017. DOI: https://doi.org/10.1016/j.apenergy.2017.05.107.

SHARMA, V.; RAI, A. C. Performance assessment of residential building envelopes enhanced with phase change materials. Energy and Buildings, v. 208, p. 109664, Feb. 2020. DOI: https://doi.org/10.1016/j.enbuild.2019.109664.

SOUDIAN, S.; BERARDI, U. Assessing the effect of night ventilation on PCM performance in high-rise residential buildings. Journal of Building Physics, v. 43, n. 3, p. 229-249, May 2019. DOI: https://doi.org/10.1177/17442591198481.

SU, W.; DARKWA, J.; KOKOGIANNAKIS, G. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, v. 48, p. 373-391, Aug. 2015. DOI: https://doi.org/10.1016/j.rser.2015.04.044.

VEIGA, R. K.; OLINGER, M. S.; MELO, A. P.; LAMBERTS, R. Modelagem da ventilação natural com aplicação do objeto Energy Management System do Programa EnergyPlus. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 15.; ENCONTRO LATINO-AMERICANO DE CONFORTO NO AMBIENTE CONSTRUÍDO, 11., João Pessoa, 2019. Anais […]. Porto Alegre: ANTAC, 2019. Disponível em: https://drive.google.com/file/d/1NZgXgUmzTVBpJrXqKM76eFkpQ4nmzdkB/view. Acesso em: 20 abr. 2022.

VERSAGE, R. S. Ventilação natural e desempenho térmico de edifícios verticais multifamiliares em Campo Grande, MS. 2009. 96 f. Dissertação (Mestrado em Arquitetura e Urbanismo) - Universidade Federal de Santa Catarina, Florianópolis, 2009.

ZEINELABDEIN, R.; OMER, S.; GAN, G. Critical review of latent heat storage systems for free cooling in buildings. Renewable and Sustainable Energy Reviews, v. 82, Part 3, p. 2843 - 2868, Feb. 2018. DOI: https://doi.org/10.1016/j.rser.2017.10.046.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.