Banner Portal
Thermal performance of opaque ventilated facades
PDF

Keywords

Thermal performance
Opaque ventilated facade
Systematic literatura review

How to Cite

GOULART, Mariana Fortes; LABAKI, Lucila Chebel. Thermal performance of opaque ventilated facades: a systematic review. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 13, n. 00, p. e022026, 2022. DOI: 10.20396/parc.v13i00.8667308. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8667308. Acesso em: 6 jul. 2024.

Abstract

Ventilated facades have been identified as a viable solution to improve the thermal performance of buildings, thereby upgrading their energy efficiency. The literature points out a lack of studies on opaque ventilated facades among the different types of these facades. Thus, this study aims to present research on the thermal performance of opaque ventilated facades using a Systematic Literature Review (SLR), considering where the research was carried out, the method used and the main parameters that influence the thermal performance of these facades. The SLR proved efficient in outlining the desired panorama, indicating that this facade model consists of a technology only recently explored in academia with research concentrated in Europe, mainly in Spain, Italy and Portugal, highlighting the Mediterranean climate as the focus of the research. Most of the studies were conducted using computer simulations, followed by experimental methods that validated the mathematical models of the simulation programs. The SLR identified the outdoor conditions and aspects of the facade geometry that have a higher influence on the thermal performance of these facades. Considering the outdoor environment conditions, solar radiation and the year's seasons were the most discussed parameters in the literature. Considering the facade geometry, the ventilated facade openings (presence or absence of joints and grilles), the cavity height, and the outer skin material were the most studied variables.

https://doi.org/10.20396/parc.v13i00.8667308
PDF

References

ALONSO, C.; OTEIZA, I.; GARCÍA-NAVARRO, J.; MARTÍN-CONSUEGRA, F. Energy consumption to cool and heat experimental modules for the energy refurbishment of façades. Three case studies in Madrid. Energy and Buildings, v. 126, p. 252-262, Aug. 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.04.034.

APARICIO-FERNÁNDEZ, C.; VIVANCOS, J. L.; FERRER-GISBERT, P.; ROYO-PASTOR, R. Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering, v. 66, n. 1-2, p. 563-570, May 2014. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2014.02.041.

BALTER, J.; GANEM, C.; BAREA, G. Mejoras en el desempeño energético de edificios en verano mediante la integración de envolventes ventiladas en fachadas norte y cubiertas. El caso de Mendoza, Argentina. Hábitat Sustentable, v. 10, n. 2, p. 94-105, 30 Dec. 2020. DOI: https://doi.org/10.22320/07190700.2020.10.02.07.

BALTER, J.; PARDAL MARCH, C.; PARICIO ANSUATEGUI, I.; GANEM, C. Air cavity performance in Opaque Ventilated Façades in accordance with the Spanish Technical Building Code. Ace: Architecture, City and Environment, v. 13, n. 39, p. 211-232, feb. 2019. DOI: http://dx.doi.org/10.5821/ace.13.39.6487.

BECK, H. E.; ZIMMERMANN, N. E.; McVICAR, T. R.; VERGOPOLAN, N.; BERG, A.; WOOD, E. F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, v. 5, 180214, Oct. 2018. DOI: https://doi.org/10.1038/sdata.2018.214.

DRESCH, A.; LACERDA, D. P.; ANTUNES JR, J. A. V. Design Science Research: A Method for Science and Technology Advancement. Cham: Springer International, 2015. p. 129–158, 2015. DOI: 10.1007/978-3-319-07374-3.

FANTUCCI, S.; MARINOSCI, C.; SERRA, V.; CARBONARO, C. Thermal Performance Assessment of an Opaque Ventilated Façade in the Summer Period: calibration of a simulation model through in-field measurements. Energy Procedia, v. 111, p. 619-628, Mar. 2017. DOI: http://dx.doi.org/10.1016/j.egypro.2017.03.224.

FANTUCCI, S.; SERRA, V.; CARBONARO, C. An experimental sensitivity analysis on the summer thermal performance of an Opaque Ventilated Facade. Energy and Buildings, v. 225, p. 110354, Oct. 2020. DOI: http://dx.doi.org/10.1016/j.enbuild.2020.110354.

GAGLIANO, A.; ANELI, S. Analysis of the energy performance of an Opaque Ventilated Façade under winter and summer weather conditions. Solar Energy, v. 205, p. 531–544, July 2020. DOI: http://dx.doi.org/10.1016/j.solener.2020.05.078

GAGLIANO, A.; NOCERA, F.; ANELI, S. Thermodynamic analysis of ventilated facades under different wind conditions in summer period. Energy and Buildings, v. 122, p. 131–139, June 2016. DOI: http://dx.doi.org/10.1016/j.enbuild.2016.04.035.

GIANCOLA, E.; SANJUAN, C.; BLANCO, E.; HERAS, M. R. Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings, v. 54, p. 363-375, Nov. 2012. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.035.

GREGÓRIO-ATEM, C.; APARICIO-FERNÁNDEZ, C.; COCH, H.; VIVANCOS, J. L. Opaque Ventilated Facade (OVF) Thermal Performance Simulation for Office Buildings in Brazil. Sustainability, v. 12, n. 18, p. 7635, Sept. 2020. http://dx.doi.org/10.3390/su12187635.

GUILLÉN, I.; GÓMEZ-LOZANO, V.; FRAN, J. M.; LÓPEZ-JIMÉNEZ, P. A. Thermal behavior analysis of different multilayer facade: numerical model versus experimental prototype. Energy and Buildings, v. 79, p. 184-190, Aug. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.05.006.

HARNANE, Y.; BOUZID, S.; BRIMA, A. Air Flow Thermal and Dynamic Behavior Inside Ventilated Cavities. International Journal of Automotive and Mechanical Engineering, v. 15, n. 3, p. 5652–5666, out. 2018. Disponível em: https://journal.ump.edu.my/ijame/article/view/94/69. Acesso em: 20 jun. 2022.

IBAÑEZ-PUY, M.; VIDAURRE-ARBIZU, M.; SACRISTÁN-FERNÁNDEZ, J. A.; MARTÍN-GÓMEZ, C. Opaque Ventilated Facades: thermal and energy performance review. Renewable and Sustainable Energy Reviews, v. 79, p. 180-191, Nov. 2017. DOI: http://dx.doi.org/10.1016/j.rser.2017.05.059.

IPCC. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2014: Synthesis Report. Geneva: IPCC, 2015. 169 p. Disponível em: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf. Acesso em: 20 feb. 2022.

IRIBARREN, V. E.; CASTELLÓ, G. G.; MAESTRE, C. R. Large format ceramic panels versus recycled aluminum casting panels: Improvement of the thermal behavior of the Museum of fine Arts of Castellón. International Journal of Engineering and Technology, v. 7, n. 4.5, p. 213–216, Feb. 2018. DOI: http://dx.doi.org/10.14419/ijet.v7i4.5.20048.

IRIBAR-SOLABERRIETA, E.; ESCUDERO-REVILLA, C.; ODRIOZOLA-MARITORENA, M.; CAMPOS-CELADOR, A.; GARCÍA-GÁFARO, C. Energy Performance of the Opaque Ventilated Facade. Energy Procedia, v. 78, p. 55-60, Nov. 2015. DOI: http://dx.doi.org/10.1016/j.egypro.2015.11.114.

MACIEL, A. C. F.; CARVALHO, M. T. Operational energy of opaque ventilated façades in Brazil. Journal of Building Engineering, v. 25, p. 100775, Sept. 2019. http://dx.doi.org/10.1016/j.jobe.2019.100775.

MANDAVINEJAD, M.; MOHAMMADI, S. Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate. Ukrainian Journal of Ecology, v. 8, n. 1, p. 273–281, 2018. Disponível em: https://cyberleninka.ru/article/n/ecological-analysis-of-natural-ventilated-facade-system-and-its-performance-in-tehrans-climate/viewer. Acesso em: 20 abr. 2022.

MARINOSCI, C.; SEMPRINI, G.; MORINI, G. L. Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings, v. 72, p. 280–287, Apr. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.12.044.

MARINOSCI, C.; STRACHAN, P. A.; SEMPRINI, G.; MORINI, G. L. Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings, v. 43, n. 4, p. 853-863, Apr. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2010.12.005.

NORE, K.; BLOCKEN, B.; THUE, J.V. On CFD simulation of wind-induced airflow in narrow ventilated facade cavities: coupled and decoupled simulations and modelling limitations. Building and Environment, v. 45, n. 8, p. 1834-1846, Ago. 2010. DOI: http://dx.doi.org/10.1016/j.buildenv.2010.02.014.

PASTORI, S.; MEREU, R.; MAZZUCCHELLI, E. S.; PASSONI, S.; DOTELLI, G. Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards. Energies, v. 14, n. 1, p. 193, Jan. 2021. DOI: http://dx.doi.org/10.3390/en14010193.

PATANIA, F.; GAGLIANO, A.; NOCERA, F.; FERLITO, A.; GALESI, A. Thermofluid-dynamic analysis of ventilated facades. Energy and Buildings, v. 42, n. 7, p. 1148-1155, July 2010. DOI: http://dx.doi.org/10.1016/j.enbuild.2010.02.006.

PECI LÓPEZ, F. P.; JENSEN, R.L.; HEISELBERG, P.; ADANA SANTIAGO, M. R. Experimental analysis and model validation of an opaque ventilated facade. Building and Environment, v. 56, p. 265-275, Oct. 2012. DOI: http://dx.doi.org/10.1016/j.buildenv.2012.03.017.

PECI LÓPEZ, F.; SANTIAGO, M. R. de A. Sensitivity study of an opaque ventilated facade in the winter season in different climate zones in Spain. Renewable Energy, v. 75, p. 524-533, Mar. 2015. DOI: http://dx.doi.org/10.1016/j.renene.2014.10.031.

PERGOLINI, M; ULPIANI, G; SHEHI, O; DI PERNA, C; STAZI, F. Controlled inlet airflow in ventilated facades: a numerical analysis. IOP Conference Series: Materials Science and Engineering, v. 609, p. 032009, Sept. 2019. DOI: http://dx.doi.org/10.1088/1757-899x/609/3/032009.

PETRICHENKO, M. R.; KOTOV, E. V.; NEMOVA, D. V.; TARASOVA, D. S.; SERGEEV, V. Numerical simulation of ventilated facades under extreme climate conditions. Magazine of Civil Engineering, v. 77, n. 1, p. 130–140, 2018. DOI: http://dx.doi.org/10.18720/MCE.77.12.

PETRITCHENKO, M. R.; SUBBOTINA, S. A.; KHAIRUTDINOVA, F. F.; REICH, E. V.; NEMOVA, D. V.; OLSHEVSKIY, V. Ya.; SERGEEV, V. V. Effect of rustication joints on air mode in ventilated facade. Magazine of Civil Engineering, v.73, n.5, p. 40–48, 2017. DOI: http://dx.doi.org/10.18720/MCE.73.4.

ROCHA, A. P. Fachada ventilada: industrial e sem desperdícios de resíduos, sistema de fachada com cerâmica extrudada começa a se disseminar em edifícios comerciais. Revista Téchne, v. 176, n. 19, p. 48-52, Nov. 2011.

STAZI, F.; TOMASSONI, F.; VEGLIÒ, A.; DI PERNA, C. Experimental evaluation of ventilated walls with an external clay cladding. Renewable Energy, v. 36, n. 12, p. 3373-3385, Dec. 2011. DOI: http://dx.doi.org/10.1016/j.renene.2011.05.016.

SÁNCHEZ, M. N.; GIANCOLA, E.; BLANCO, E.; SOUTULLO, S.; SUÁREZ, M. Experimental Validation of a Numerical Model of a Ventilated Facade with Horizontal and Vertical Open Joints. Energies, v. 13, n. 1, p. 146, Dec. 2020. DOI: http://dx.doi.org/10.3390/en13010146.

SÁNCHEZ, M. N.; GIANCOLA, E.; SUÁREZ, M. J.; BLANCO, E.; HERAS, M. R. Experimental evaluation of the airflow behaviour in horizontal and vertical Open Joint Ventilated Facades using Stereo-PIV. Renewable Energy, v. 109, p. 613-623, Aug. 2017. DOI: http://dx.doi.org/10.1016/j.renene.2017.03.082.

SÁNCHEZ, M. N.; SANJUAN, C.; SUÁREZ, M. J.; HERAS, M. R. Experimental assessment of the performance of open joint ventilated facades with buoyancy-driven airflow. Solar Energy, v. 91, p. 131-144, May 2013. DOI: http://dx.doi.org/10.1016/j.solener.2013.01.019.

SANJUAN, C.; SÁNCHEZ, M. N.; HERAS, M. del R.; BLANCO, E. Experimental analysis of natural convection in open joint ventilated facades with 2D PIV. Building and Environment, v. 46, n. 11, p. 2314-2325, Nov. 2011a. DOI: http://dx.doi.org/10.1016/j.buildenv.2011.05.014.

SANJUAN, C.; SUÁREZ, M. J.; BLANCO, E.; HERAS, M. del R. Development and experimental validation of a simulation model for open joint ventilated façades. Energy and Buildings, v. 43, n. 12, p. 3446-3456, Dec. 2011b. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.09.005.

SANJUAN, C.; SUÁREZ, M. J.; GONZÁLEZ, M.; PISTONO, J.; BLANCO, E. Energy performance of an open-joint ventilated façade compared with a conventional sealed cavity façade. Solar Energy, v. 85, n. 9, p. 1851-1863, Sept. 2011c. DOI: http://dx.doi.org/10.1016/j.solener.2011.04.028.

SCHABOWICZ, K.; ZAWISLAK, L. Numerical Comparison of Thermal Behaviour Between Ventilated Facades. Studia Geotechnica et Mechanica, v. 42, n. 4, p. 297–305, Dec. 2020. DOI: http://dx.doi.org/10.2478/sgem-2019-0044.

SEFERIS, P.; STRACHAN, P.; DIMOUDI, A.; ANDROUTSOPOULOS, A. Investigation of the performance of a ventilated wall. Energy and Buildings, v. 43, n. 9, p. 2167-2178, Sept. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.04.023.

SOTO FRANCÉS, V. M.; SARABIA-ESCRIVÁ, E. J. S.; PINAZO-OJER, J. M.; BANNIER, E.; CANTAVELLA SOLER, V.; SILVA MORENO, G. S. Modeling of ventilated facades for energy building simulation software. Energy and Buildings, v. 65, p. 419-428, Oct. 2013. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.06.015.

STAZI, F.; ULPIANI, G.; PERGOLINI, M.; DI PERNA, C.; D'ORAZIO, M. The role of wall layers properties on the thermal performance of ventilated facades: experimental investigation on narrow-cavity design. Energy and Buildings, v. 209, p. 109622, Feb. 2020. DOI: http://dx.doi.org/10.1016/j.enbuild.2019.109622.

STAZI, F.; ULPIANI, G.; PERGOLINI, M.; MAGNI, D.; DI PERNA, C. Experimental Comparison Between Three Types of Opaque Ventilated Facades. The Open Construction and Building Technology Journal, v. 12, p. 296-308, Nov. 2018. DOI: http://dx.doi.org/10.2174/1874836801812010296.

STAZI, F.; VEGLIO, A.; DI PERNA, C. Experimental assessment of a zinc-titanium ventilated façade in a Mediterranean climate. Energy and Buildings, v. 69, p. 525–534, Feb. 2014. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.11.043.

SUÁREZ, C.; JOUBERT, P.; MOLINA, J. L.; SÁNCHEZ, F. J. Heat transfer and mass flow correlations for ventilated facades. Energy and Buildings, v. 43, n. 12, p. 3696-3703, Dec. 2011. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.10.002.

ZURRO GARCÍA, B.; ARREGI GOIKOLEA, B.; GONZÁLEZ MARTÍN, J. M.; HERNANDEZ GARCÍA, J. L. Comparison of theoretical heat transfer model with results from experimental monitoring installed in a refurbishment with ventilated facade. IOP Conference Series: Earth and Environmental Science, v. 410, n. 1, p. 012104, Jan. 2020. DOI: http://dx.doi.org/10.1088/1755-1315/410/1/012104.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 PARC Pesquisa em Arquitetura e Construção

Downloads

Download data is not yet available.